

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Wand

Wand

[image: Latest PyPI version]
 [https://pypi.python.org/pypi/Wand][image: Documentation Status]
 [http://docs.wand-py.org/en/latest/][image: Build Status]
 [https://travis-ci.org/dahlia/wand][image: Coverage Status]
 [https://coveralls.io/r/dahlia/wand]Wand is a ctypes [http://docs.python.org/library/ctypes.html#module-ctypes]-based simple ImageMagick [http://www.imagemagick.org/] binding for Python.

from wand.image import Image
from wand.display import display

with Image(filename='mona-lisa.png') as img:
 print(img.size)
 for r in 1, 2, 3:
 with img.clone() as i:
 i.resize(int(i.width * r * 0.25), int(i.height * r * 0.25))
 i.rotate(90 * r)
 i.save(filename='mona-lisa-{0}.png'.format(r))
 display(i)

You can install it from PyPI [https://pypi.python.org/pypi/Wand] (and it requires MagickWand library):

$ apt-get install libmagickwand-dev
$ pip install Wand

Why just another binding?

There are already many MagickWand API bindings for Python, however they
are lacking something we need:

	Pythonic and modern interfaces

	Good documentation

	Binding through ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] (not C API) — we are ready to go PyPy!

	Installation using pip or easy_install

Requirements

	Python 2.6 or higher
	CPython 2.6 or higher

	CPython 3.2 or higher

	PyPy 1.5 or higher

	MagickWand library
	libmagickwand-dev for APT on Debian/Ubuntu

	imagemagick for MacPorts/Homebrew on Mac

	ImageMagick-devel for Yum on CentOS

User’s guide

	What’s new in Wand 0.3?
	Python 3 support

	Sequence

	Drawing

	EXIF

	Seam carving

	Channels

	Histogram

	Installation
	Install ImageMagick on Debian/Ubuntu

	Install ImageMagick on Fedora/CentOS

	Install ImageMagick on Mac

	Install ImageMagick on Windows

	Install Wand on Debian/Ubuntu

	Install Wand on FreeBSD

	Reading images
	Open an image file

	Read a input stream

	Read a blob

	Clone an image

	Hint file format

	Open an empty image

	Writing images
	Convert images to JPEG

	Save to file

	Save to stream

	Get binary string

	Resizing and cropping
	Resize images

	Sample images

	Crop images

	Transform images

	Seam carving (also known as content-aware resizing)

	Transformation
	Rotation

	Flip and flop

	Drawing
	Arc

	Bezier

	Circle

	Color & Matte

	Composite

	Ellipse

	Lines

	Paths

	Point

	Polygon

	Polyline

	Push & Pop

	Rectangles

	Texts

	Colorspace
	Image types

	Enable alpha channel

	Reading EXIF

	Sequence
	sequence is a Sequence

	Image versus SingleImage

	Resource management

	Running tests
	Skipping tests

	Using tox

	Continuous Integration

	Code Coverage

	Roadmap
	Version 0.4

	Very future versions

	Wand Changelog
	0.3 series

	0.2 series

	0.1 series

	Talks and Presentations
	Talks in 2012

References

	wand — Simple MagickWand API binding for Python
	wand.image — Image objects

	wand.color — Colors

	wand.font — Fonts

	wand.drawing — Drawings

	wand.sequence — Sequences

	wand.resource — Global resource management

	wand.exceptions — Errors and warnings

	wand.api — Low-level interfaces

	wand.compat — Compatibility layer

	wand.display — Displaying images

	wand.version — Version data

Troubleshooting

Mailing list

Wand has the list for users. If you want to subscribe the list, just send a
mail to:

wand@librelist.com

The list archive [http://librelist.com/browser/wand/] provided by Librelist [http://librelist.com/] is synchronized every hour.

Stack Overflow

There’s a Stack Overflow tag for Wand:

http://stackoverflow.com/questions/tagged/wand

Freely ask questions about Wand including troubleshooting. Thanks for
sindikat [http://stackoverflow.com/users/596361/sindikat]‘s contribution.

Quora

There’s a Quora topic for Wand: Wand (ImageMagick binding) [https://www.quora.com/Wand-ImageMagick-binding]. Be free
to add questions to the topic, though it’s suitable for higher-level questions
rather than troubleshooting.

Open source

Wand is an open source software written by Hong Minhee [http://hongminhee.org/] (initially written
for StyleShare [https://stylesha.re/]). See also the complete list of contributors [https://github.com/dahlia/wand/graphs/contributors] as well.
The source code is distributed under MIT license [http://minhee.mit-license.org/] and you can find it at
GitHub repository [https://github.com/dahlia/wand]. Check out now:

$ git clone git://github.com/dahlia/wand.git

If you find a bug, please notify to our issue tracker [https://github.com/dahlia/wand/issues]. Pull requests
are always welcome!

We discuss about Wand’s development on IRC. Come #wand channel on
freenode network.

Check out Wand Changelog also.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

What’s new in Wand 0.3?

This guide doesn’t cover all changes in 0.3. See also the full list of
changes in Version 0.3.0.

Python 3 support

Wand finally becomes to support Python 3, the future of Python. It actually
doesn’t cover all Python 3 versions, but the most two recent versions, 3.2 and
3.3, are supported. We still support Python 2.6, 2.7, and PyPy as well,
so there’s no dropped compatibility.

See also

	Wand now works on Python 3.2 and 3.3 [http://librelist.com/browser/wand/2013/6/6/wand-now-works-on-python-3-2-and-3-3/]

	The announcement about this on the mailing list.

Sequence

Wand now adds supports to sequential images like animated image/gif
images and image/ico images that contains multiple icons.
To distinguish between each single image and the container image,
newly introduced class SingleImage has been added.
The most of operations and properties are commonly available for both types,
Image and SingleImage, and these
are defined by their common superclass, BaseImage.

So every Image object now has sequence attribute which is list-like. It implements
collections.MutableSequence [http://docs.python.org/library/collections.html#collections.MutableSequence] protocol. That means you can pass it
into for [http://docs.python.org/reference/compound_stmts.html#for] statement, get an item by index from it, slice it,
call len() [http://docs.python.org/library/functions.html#len] for it, or del [http://docs.python.org/reference/simple_stmts.html#del] an item of it by index. Every item
inside it is a SingleImage instance.

The following example shows you how to determine the largest icon in
a image/ico file:

>>> from wand.image import Image
>>> import urllib2
>>> with Image(file=urllib2.urlopen('https://github.com/favicon.ico')) as ico:
... max(ico.sequence, key=lambda i: i.width * i.height)
...
<wand.sequence.SingleImage: 80d158d (32x32)>

This feature was initially proposed by Michael Elovskikh (#34 [https://github.com/dahlia/wand/issues/34]),
and then he also did initial work on this (#39 [https://github.com/dahlia/wand/issues/39]). Andrey Antukh
then improved its API (#66 [https://github.com/dahlia/wand/issues/66]). Bear Dong and Taeho Kim did additional
efforts for issues related to animated image/gif images
(#88 [https://github.com/dahlia/wand/issues/88], #103 [https://github.com/dahlia/wand/issues/103], #112 [https://github.com/dahlia/wand/issues/112]).

See also the guide for sequence as well: Sequence.

Drawing

Wand 0.3 provides basic facilities to draw Lines or
Texts.

The following example code writes “Wand” to the transparent background
using caption() method:

>>> from wand.font import Font
>>> font = Font(path='tests/assets/League_Gothic.otf', size=64)
>>> with Image(width=300, height=150) as image:
... image.caption('Wand', left=5, top=5, width=490, height=140, font=font)
... image.save(filename='caption-result.png')
...

[image: caption-result.png]
Adrian Jung and did the most of work for this (#64 [https://github.com/dahlia/wand/issues/64]).
Cha, Hojeong added higher-level APIs on this and more text drawing APIs
(#69 [https://github.com/dahlia/wand/issues/69], #71 [https://github.com/dahlia/wand/issues/71], #74 [https://github.com/dahlia/wand/issues/74]).

EXIF

Wand now can read EXIF metadata from images through metadata property which is a mapping:

>>> from __future__ import print_function
>>> url = 'http://farm9.staticflickr.com/8282/7874109806_3fe0080ae4_o_d.jpg'
>>> with Image(file=urllib2.urlopen(url)) as i:
... for key, value in i.metadata.items():
... if key.startswith('exif:'):
... print(key, value)
...
exif:ApertureValue 8/1
exif:CustomRendered 0
exif:DateTime 2012:08:27 18:42:15
exif:DateTimeDigitized 2012:08:17 02:33:36
exif:DateTimeOriginal 2012:08:17 02:33:36
exif:ExifOffset 204
exif:ExifVersion 48, 50, 50, 49
exif:ExposureBiasValue 0/1
exif:ExposureMode 1
exif:ExposureProgram 1
exif:ExposureTime 1/50
...

Thanks for Michael Elovskikh who worked on this (#25 [https://github.com/dahlia/wand/issues/25], #56 [https://github.com/dahlia/wand/issues/56]).

See also the guide for this as well: Reading EXIF.

Seam carving

ImageMagick optionally provides seam carving [http://en.wikipedia.org/wiki/Seam_carving] (also known as liquid rescaling
or content-aware resizing) through MagickLiquidRescaleImage()
function if it’s properly configured --with-lqr. It makes you able to
magically resize images without distortion.

Wand 0.3 becomes to provide a simple method Image.liquid_rescale() which binds this API.

You can find more detail examples in its guide: Seam carving (also known as content-aware resizing).

Channels

Some channel-related APIs like wand.image.Image.channel_images,
channel_depths, and
composite_channel() are added in Wand 0.3.

The following example makes the overlayed image (second,
composite-channel-result.jpg) from the original image (first,
composite-channel.jpg):

[image: composite-channel.jpg]
[image: composite-channel-result.jpg]
import shutil
import urllib2

from wand.image import Image
from wand.color import Color

url = 'http://farm6.staticflickr.com/5271/5836279075_c3f8226bc1_z.jpg'
with open('composite-channel.jpg', 'wb') as f:
 u = urllib2.urlopen(url)
 shutil.copyfileobj(u, f)
 u.close()

with Image(filename='composite-channel.jpg') as image:
 with Image(background=Color('black'),
 width=image.width,
 height=image.height / 3) as bar:
 image.composite_channel(
 channel='all_channels',
 image=bar,
 operator='overlay',
 left=0,
 top=(image.height- bar.height) / 2
)
 image.save(filename='composite-channel-result.jpg')

Note

The image composite-channel.jpg used in the above example
is taken by Ejja Pahlevi [http://saturatedhigh.tumblr.com/] and licensed under CC-BY-2.0 [http://creativecommons.org/licenses/by/2.0/].
It can be found the original photography from Flickr [http://www.flickr.com/photos/61808613@N06/5836279075/].

Histogram

Every image now has histogram attribute,
which is dictionary-like. Its keys are colors that used once or more in
the image, and values are are the numbers of the pixels.

For example, simply get keys() of
histogram if you need its palette.

>>> url = 'http://farm7.staticflickr.com/6145/5982384872_cb1e01004e_n.jpg'
>>> with Image(file=urllib2.urlopen(url)) as image:
... palette = image.histogram.keys()

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Installation

Wand itself can be installed from PyPI [http://pypi.python.org/pypi/Wand] using easy_install or
pip:

$ easy_install Wand # or
$ pip install Wand

Wand is a Python binding of ImageMagick [http://www.imagemagick.org/], so you have to install it as well:

	Debian/Ubuntu

	Fedora/CentOS

	Mac

	Windows

Or you can simply install Wand and its entire dependencies using the package
manager of your system (it’s way convenient but the version might be outdated):

	Debian/Ubuntu

	FreeBSD

Install ImageMagick on Debian/Ubuntu

If you’re using Linux distributions based on Debian like Ubuntu, it can be
easily installed using APT:

$ sudo apt-get install libmagickwand-dev

If you need SVG, WMF, OpenEXR, DjVu, and Graphviz support you have to install
libmagickcore5-extra as well:

$ sudo apt-get install libmagickcore5-extra

Install ImageMagick on Fedora/CentOS

If you’re using Linux distributions based on Redhat like Fedora or CentOS,
it can be installed using Yum:

$ yum update
$ yum install ImageMagick-devel

Install ImageMagick on Mac

You need one of Homebrew [http://mxcl.github.com/homebrew/] or MacPorts [http://www.macports.org/] to install ImageMagick.

	Homebrew

	$ brew install imagemagick

If seam carving (Image.liquid_rescale()) is needed you have install
liblqr [http://liblqr.wikidot.com/] as well:

$ brew install imagemagick --with-liblqr

	MacPorts

	$ sudo port install imagemagick

If your Python in not installed using MacPorts, you have to export
MAGICK_HOME path as well. Because Python that is not installed
using MacPorts doesn’t look up /opt/local, the default path prefix
of MacPorts packages.

$ export MAGICK_HOME=/opt/local

Install ImageMagick on Windows

You could build ImageMagick by yourself, but it requires a build tool chain
like Visual Studio to compile it. The easiest way is simply downloading
a prebuilt binary of ImageMagick for your architecture (win32 or
win64).

You can download it from the following link:

http://www.imagemagick.org/download/binaries/

Choose a binary for your architecture:

	Windows 32-bit

	ImageMagick-6.9.0-4-Q16-x86-dll.exe [http://www.imagemagick.org/download/binaries/ImageMagick-6.9.0-4-Q16-x86-dll.exe]

	Windows 64-bit

	ImageMagick-6.9.0-4-Q16-x64-dll.exe [http://www.imagemagick.org/download/binaries/ImageMagick-6.9.0-4-Q16-x64-dll.exe]

[image: ../_images/windows-setup.png]
Note that you have to check Install development headers and
libraries for C and C++ to make Wand able to link to it.

[image: ../_images/windows-envvar.png]
Lastly you have to set MAGICK_HOME environment variable to the path
of ImageMagick (e.g. C:\Program Files\ImageMagick-6.7.7-Q16).
You can set it in Computer ‣ Properties ‣
Advanced system settings ‣ Advanced ‣ Environment Variables....

Install Wand on Debian/Ubuntu

Wand itself is already packaged in Debian/Ubuntu APT repository: python-wand [http://packages.debian.org/sid/python-wand].
You can install it using apt-get command:

$ sudo apt-get install python-wand

Install Wand on FreeBSD

Wand itself is already packaged in FreeBSD ports collection: py-wand [http://www.freebsd.org/cgi/cvsweb.cgi/ports/graphics/py-wand/].
You can install it using pkg_add command:

$ pkg_add -r py-wand

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Reading images

There are several ways to open images:

	To open an image file

	To read a input stream (file-like object) that provides an image binary

	To read a binary string that contains image

	To copy an existing image object

	To open an empty image

All of these operations are provided by the constructor of
Image class.

Open an image file

The most frequently used way is just to open an image by its filename.
Image‘s constructor can take the parameter named
filename:

from __future__ import print_function
from wand.image import Image

with Image(filename='pikachu.png') as img:
 print('width =', img.width)
 print('height =', img.height)

Note

It must be passed by keyword argument exactly. Because the constructor
has many parameters that are exclusive to each other.

There is a keyword argument named file as well, but don’t confuse
it with filename. While filename takes a string of a filename,
file takes a input stream (file-like object).

Read a input stream

If an image to open cannot be located by a filename but can be read through
input stream interface (e.g. opened by os.popen() [http://docs.python.org/library/os.html#os.popen],
contained in StringIO [http://docs.python.org/library/stringio.html#StringIO.StringIO], read by urllib2.urlopen() [http://docs.python.org/library/urllib2.html#urllib2.urlopen]),
it can be read by Image constructor’s file parameter.
It takes all file-like objects which implements read() [http://docs.python.org/library/stdtypes.html#file.read] method:

from __future__ import print_function
from urllib2 import urlopen
from wand.image import Image

response = urlopen('https://stylesha.re/minhee/29998/images/100x100')
try:
 with Image(file=response) as img:
 print('format =', img.format)
 print('size =', img.size)
finally:
 response.close()

In the above example code, response object returned by
urlopen() [http://docs.python.org/library/urllib2.html#urllib2.urlopen] function has read() [http://docs.python.org/library/stdtypes.html#file.read] method,
so it also can be used as an input stream for a downloaded image.

Read a blob

If you have just a binary string (str [http://docs.python.org/library/functions.html#str]) of the image, you can pass
it into Image constructor’s blob parameter to read:

from __future__ import print_function
from wand.image import Image

with open('pikachu.png') as f:
 image_binary = f.read()

with Image(blob=image_binary) as img:
 print('width =', img.width)
 print('height =', img.height)

It is a way of the lowest level to read an image. There will probably not be
many cases to use it.

Clone an image

If you have an image already and have to copy it for safe manipulation,
use clone() method:

from wand.image import Image

with Image(filename='pikachu.png') as original:
 with original.clone() as converted:
 converted.format = 'png'
 # operations on a converted image...

For some operations like format converting or cropping, there are safe methods
that return a new image of manipulated result like
convert() or slicing operator. So the above example
code can be replaced by:

from wand.image import Image

with Image(filename='pikachu.png') as original:
 with original.convert('png') as converted:
 # operations on a converted image...

Hint file format

When it’s read from a binary string or a file object, you can explicitly
give the hint which indicates file format of an image to read — optional
format keyword is for that:

from wand.image import Image

with Image(blob=image_binary, format='ico') as image:
 print(image.format)

New in version 0.2.1: The format parameter to Image constructor.

Open an empty image

To open an empty image, you have to set its width and height:

from wand.image import Image

with Image(width=200, height=100) as img:
 img.save(filename='200x100-transparent.png')

Its background color will be transparent by default. You can set background
argument as well:

from wand.color import Color
from wand.image import Image

with Color('red') as bg:
 with Image(width=200, height=100, background=bg) as img:
 img.save(filename='200x100-red.png')

New in version 0.2.2: The width, height, and background parameters to
Image constructor.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Writing images

You can write an Image object into a file or a byte
string buffer (blob) as format what you want.

Convert images to JPEG

If you wonder what is image’s format, use format
property.

>>> image.format
'JPEG'

The format property is writable, so you can convert
images by setting this property.

from wand.image import Image

with Image(filename='pikachu.png') as img:
 img.format = 'jpeg'
 # operations to a jpeg image...

If you want to convert an image without any changes of the original,
use convert() method instead:

from wand.image import Image

with Image(filename='pikachu.png') as original:
 with original.convert('jpeg') as converted:
 # operations to a jpeg image...
 pass

Note

Support for some of the formats are delegated to libraries or external
programs. To get a complete listing of which image formats are supported
on your system, use identify command provided by ImageMagick:

$ identify -list format

Save to file

In order to save an image to a file, use save()
method with the keyword argument filename:

from wand.image import Image

with Image(filename='pikachu.png') as img:
 img.format = 'jpeg'
 img.save(filename='pikachu.jpg')

Save to stream

You can write an image into a output stream (file-like object which implements
write() [http://docs.python.org/library/stdtypes.html#file.write] method) as well. The parameter file takes a such
object (it also is the first positional parameter of
save() method).

For example, the following code converts pikachu.png image into
JPEG, gzips it, and then saves it to pikachu.jpg.gz:

import gzip
from wand.image import Image

gz = gzip.open('pikachu.jpg.gz')
with Image(filename='pikachu.png') as img:
 img.format = 'jpeg'
 img.save(file=gz)
gz.close()

Get binary string

Want just a binary string of the image? Use
make_blob() method so:

from wand.image import Image

with image(filename='pikachu.png') as img:
 img.format = 'jpeg'
 jpeg_bin = img.make_blob()

There’s the optional format parameter as well. So the above example code
can be simpler:

from wand.image import Image

with Image(filename='pikachu.png') as img:
 jpeg_bin = img.make_blob('jpeg')

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Resizing and cropping

Creating thumbnails (by resizing images) and cropping are most frequent works
about images. This guide explains ways to deal with sizes of images.

Above all, to get the current size of the image check
width and height
properties:

>>> from urllib2 import urlopen
>>> from wand.image import Image
>>> f = urlopen('http://api.twitter.com/1/users/profile_image/hongminhee')
>>> with Image(file=f) as img:
... width = img.width
... height = img.height
...
>>> f.close()
>>> width
48
>>> height
48

If you want the pair of (width,
height), check size
property also.

Note

These three properties are all readonly.

Resize images

It scales an image into a desired size even if the desired size is larger
than the original size. ImageMagick provides so many algorithms for resizing.
The constant FILTER_TYPES contains names of filtering
algorithms.

See also

	ImageMagick Resize Filters [http://www.dylanbeattie.net/magick/filters/result.html]

	Demonstrates the results of resampling three images using the various
resize filters and blur settings available in ImageMagick,
and the file size of the resulting thumbnail images.

Image.resize() method takes width
and height of a desired size, optional filter ('undefined' by
default which means IM will try to guess best one to use) and optional
blur (default is 1). It returns nothing but resizes itself in-place.

>>> img.size
(500, 600)
>>> img.resize(50, 60)
>>> img.size
(50, 60)

Sample images

Although Image.resize() provides
many filter options, it’s relatively slow. If speed is important for
the job, you’d better use Image.sample()
instead. It works in similar way to Image.resize() except it doesn’t provide filter and
blur options:

>>> img.size
(500, 600)
>>> img.sample(50, 60)
>>> img.size
(50, 60)

Crop images

To extract a sub-rectangle from an image, use the
crop() method. It crops the image in-place.
Its parameters are left, top, right, bottom in order.

>>> img.size
(200, 300)
>>> img.crop(10, 20, 50, 100)
>>> img.size
(40, 80)

It can also take keyword arguments width and height. These parameters
replace right and bottom.

>>> img.size
(200, 300)
>>> img.crop(10, 20, width=40, height=80)
>>> img.size
(40, 80)

There is an another way to crop images: slicing operator. You can crop
an image by [left:right, top:bottom] with maintaining the original:

>>> img.size
(300, 300)
>>> with img[10:50, 20:100] as cropped:
... print(cropped.size)
...
(40, 80)
>>> img.size
(300, 300)

Transform images

Use this function to crop and resize and image at the same time,
using ImageMagick geometry strings. Cropping is performed first,
followed by resizing.

For example, if you want to crop your image to 300x300 pixels
and then scale it by 2x for a final size of 600x600 pixels,
you can call:

img.transform('300x300', '200%')

Other example calls:

crop top left corner
img.transform('50%')

scale height to 100px and preserve aspect ratio
img.transform(resize='x100')

if larger than 640x480, fit within box, preserving aspect ratio
img.transform(resize='640x480>')

crop a 320x320 square starting at 160x160 from the top left
img.transform(crop='320+160+160')

See also

	ImageMagick Geometry Specifications [http://www.imagemagick.org/script/command-line-processing.php#geometry]

	Cropping and resizing geometry for the transform method are
specified according to ImageMagick’s geometry string format.
The ImageMagick documentation provides more information about
geometry strings.

Seam carving (also known as content-aware resizing)

New in version 0.3.0.

Seam carving [http://en.wikipedia.org/wiki/Seam_carving] is an algorithm for image resizing that functions by
establishing a number of seams (paths of least importance) in an image
and automatically removes seams to reduce image size or inserts seams
to extend it.

In short: you can magickally resize images without distortion!
See the following examples:

	Original
	Resized

	[image: seam.jpg]

	[image: seam-resize.jpg]

	Cropped
	Seam carving

	[image: seam-crop.jpg]

	[image: seam-liquid.jpg]

You can easily rescale images with seam carving using Wand:
use Image.liquid_rescale()
method:

>>> image = Image(filename='seam.jpg')
>>> image.size
(320, 234)
>>> with image.clone() as resize:
... resize.resize(234, 234)
... resize.save(filename='seam-resize.jpg')
... resize.size
...
(234, 234)
>>> with image[:234, :] as crop:
... crop.save(filename='seam-crop.jpg')
... crop.size
...
(234, 234)
>>> with image.clone() as liquid:
... liquid.liquid_rescale(234, 234)
... liquid.save(filename='seam-liquid.jpg')
... liquid.size
...
(234, 234)

Note

It may raise MissingDelegateError if your
ImageMagick is configured --without-lqr option. In this case
you should recompile ImageMagick.

See also

	Seam carving [http://en.wikipedia.org/wiki/Seam_carving] — Wikipedia

	The article which explains what seam carving is on Wikipedia.

Note

The image seam.jpg used in the above example is taken by
D. Sharon Pruitt [http://www.pinksherbet.com/] and licensed under CC-BY-2.0 [http://creativecommons.org/licenses/by/2.0/].
It can be found the original photography from Flickr [http://www.flickr.com/photos/pinksherbet/2443468531/].

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Transformation

Note

The image transform.jpg used in this docs is taken by
Megan Trace [http://megantracephoto.tumblr.com/], and licensed under CC BY-NC 2.0 [http://creativecommons.org/licenses/by-nc/2.0/deed.en].
It can be found the original photography from Flickr [http://www.flickr.com/photos/megantrace/6234830561/].

Rotation

New in version 0.1.8.

Image object provides a simple method to rotate images:
rotate(). It takes a degree which can be 0
to 359. (Actually you can pass 360, 361, or more but it will be the same to
0, 1, or more respectively.)

For example, where the given image transform.jpg:

[image: transform.jpg]
The below code makes the image rotated 90° to right:

from wand.image import Image

with Image(filename='transform.jpg') as image:
 with image.clone() as rotated:
 rotated.rotate(90)
 rotated.save(filename='transform-rotated-90.jpg')

The generated image transform-rotated-90.jpg looks like:

[image: transform-rotated-90.jpg]
If degree is not multiples of 90, the optional parameter background
will help (its default is transparent):

from wand.color import Color
from wand.image import Image

with Image(filename='transform.jpg') as image:
 with image.clone() as rotated:
 rotated.rotate(135, background=Color('rgb(229,221,112)'))
 rotated.save(filename='transform-rotated-135.jpg')

The generated image transform-rotated-135.jpg looks like:

[image: transform-rotated-135.jpg]

Flip and flop

New in version 0.3.0.

You can make a mirror image by reflecting the pixels around the central
x- or y-axis. For example, where the given image transform.jpg:

[image: transform.jpg]
The following code flips the image using Image.flip() method:

from wand.image import Image

with Image(filename='transform.jpg') as image:
 with image.clone() as flipped:
 flipped.flip()
 flipped.save(filename='transform-flipped.jpg')

The image transform-flipped.jpg generated by the above code looks like:

[image: transform-flipped.jpg]
As like flip(),
flop() does the same thing except it doesn’t
make a vertical mirror image but horizontal:

from wand.image import Image

with Image(filename='transform.jpg') as image:
 with image.clone() as flopped:
 flopped.flop()
 flopped.save(filename='transform-flopped.jpg')

The image transform-flopped.jpg generated by the above code looks like:

[image: transform-flopped.jpg]

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Drawing

New in version 0.3.0.

The wand.drawing module provides some basic drawing functions.
wand.drawing.Drawing object buffers instructions for drawing
shapes into images, and then it can draw these shapes into zero or more
images.

It’s also callable and takes an Image object:

from wand.drawing import Drawing
from wand.image import Image

with Drawing() as draw:
 # does something with ``draw`` object,
 # and then...
 with Image(filename='wandtests/assets/beach.jpg') as image:
 draw(image)

Arc

New in version 0.4.0.

Arcs can be drawn by using arc() method. You’ll
need to define three pairs of (x, y) coordinates. First & second pair of
coordinates will be the minimum bounding rectangle, and the last pair define
the starting & ending degree.

An example:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
 draw.stroke_color = Color('black')
 draw.stroke_width = 2
 draw.fill_color = Color('white')
 draw.arc((25, 25), # Stating point
 (75, 75), # Ending point
 (135,-45)) # From bottom left around to top right
 with Image(width=100,
 height=100,
 background=Color('lightblue')) as img:
 draw.draw(img)
 img.save(filename='draw-arc.gif')

[image: draw-arc.gif]

Bezier

New in version 0.4.0.

You can draw bezier curves using bezier() method.
This method requires at least four points to determine a bezier curve. Given
as a list of (x, y) coordinates. The first & last pair of coordinates are
treated as start & end, and the second & third pair of coordinates act as
controls.

For example:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
 draw.stroke_color = Color('black')
 draw.stroke_width = 2
 draw.fill_color = Color('white')
 points = [(10,50), # Start point
 (50,10), # First control
 (50,90), # Second control
 (90,50)] # End point
 draw.bezier(points)
 with Image(width=100,
 height=100,
 background=Color('lightblue')) as image:
 draw(image)

[image: draw-bezier.gif]
Control width & color of curve with the drawing properties:

	stroke_color

	stroke_width

Circle

New in version 0.4.0.

You can draw circles using circle() method.
Circles are drawn by defining two pairs of (x, y) coordinates. First coordinate
for the center “origin” point, and a second pair for the outer
perimeter. For example, the following code draws a circle in the middle of
the image:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
 draw.stroke_color = Color('black')
 draw.stroke_width = 2
 draw.fill_color = Color('white')
 draw.circle((50, 50), # Center point
 (25, 25)) # Perimeter point
 with Image(width=100, height=100, background=Color('lightblue')) as image:
 draw(image)

[image: draw-circle.gif]

Color & Matte

New in version 0.4.0.

You can draw with colors directly on the coordinate system of an image. Define
which color to set by setting fill_color.
The behavior of color() is controlled by setting
one of PAINT_METHOD_TYPES paint methods.

	'point' alters a single pixel.

	'replace' swaps on color for another. Threshold is influenced by fuzz.

	'floodfill' fills area of a color influenced by fuzz.

	'filltoborder' fills area of a color until border defined by border_color.

	'reset' replaces the whole image to a single color.

Example fill all to green boarder:

from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
 draw.border_color = Color('green')
 draw.fill_color = Color('blue')
 draw.color(15, 25, 'filltoborder')

The matte() method is identical to the color()
method above, but alters the alpha channel of the color area selected. Colors
can be manipulated, but not replaced.

with Drawing() as draw:
 draw.fill_color = None # or Color('none')
 draw.matte(15, 25, 'floodfill')

Composite

New in version 0.4.0.

Similar to composite_channel(), this
composite() method will render a given image on
top of the drawing subject image following the
COMPOSITE_OPERATORS options. An compositing image must be
given with a destination top, left, width, and height values.

from wand.image import Image, COMPOSITE_OPERATORS
from wand.drawing import Drawing
from wand.display import display

wizard = Image(filename='wizard:')
rose = Image(filename='rose:')

for o in COMPOSITE_OPERATORS:
 w = wizard.clone()
 r = rose.clone()
 with Drawing() as draw:
 draw.composite(operator=o, left=175, top=250,
 width=r.width, height=r.height, image=r)
 draw(w)
 display(w)

Ellipse

New in version 0.4.0.

Ellipse can be drawn by using the ellipse() method.
Like drawing circles, the ellipse requires a origin point, however, a pair
of (x, y) radius are used in relationship to the origin coordinate. By
default a complete “closed” ellipse is drawn. To draw a partial ellipse, provide
a pair of starting & ending degrees as the third parameter.

An example of a full ellipse:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
 draw.stroke_color = Color('black')
 draw.stroke_width = 2
 draw.fill_color = Color('white')
 draw.ellipse((50, 50), # Origin (center) point
 (40, 20)) # 80px wide, and 40px tall
 with Image(width=100, height=100, background=Color('lightblue')) as image:
 draw(image)

[image: draw-ellipse-full.gif]
Same example as above, but with a half-partial ellipse defined by the third
parameter:

draw.ellipse((50, 50), # Origin (center) point
 (40, 20), # 80px wide, and 40px tall
 (90,-90)) # Draw half of ellipse from bottom to top

[image: draw-ellipse-part.gif]

Lines

You can draw lines using line() method.
It simply takes two (x, y) coordinates for start and end of a line.
For example, the following code draws a diagonal line into the image:

draw.line((0, 0), image.size)
draw(image)

Or you can turn this diagonal line upside down:

draw.line((0, image.height), (image.width, 0))
draw(image)

The line color is determined by fill_color
property, and you can change this of course. The following code draws
a red diagonal line into the image:

from wand.color import Color

with Color('red') as color:
 draw.fill_color = color
 draw.line((0, 0), image.size)
 draw(image)

Paths

New in version 0.4.0.

Paths can be drawn by using any collection of path functions between
path_start() and
path_finish() methods. The available path functions
are:

	path_close() draws a path from last point to first.

	path_curve() draws a cubic bezier curve.

	path_curve_to_quadratic_bezier() draws a quadratic bezier curve.

	path_elliptic_arc() draws an elliptical arc.

	path_horizontal_line() draws a horizontal line.

	path_line() draws a line path.

	path_move() adjust current point without drawing.

	path_vertical_line() draws a vertical line.

Each path method expects a destination point, and will draw from the current
point to the new point. The destination point will become the new current point
for the next applied path method. Destination points are given in the
form of (x, y) coordinates to the to parameter, and can by relative
or absolute to the current point by setting the relative flag. The
path_curve() and
path_curve_to_quadratic_bezier() expect
additional control points, and can complement previous drawn curves by
setting a smooth flag. When the smooth flag is set to True the first
control point is assumed to be the reflection of the last defined control point.

For example:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
 draw.stroke_width = 2
 draw.stroke_color = Color('black')
 draw.fill_color = Color('white')
 draw.path_start()
 # Start middle-left
 draw.path_move(to=(10, 50))
 # Curve accross top-left to center
 draw.path_curve(to=(40, 0),
 controls=[(10, -40), (30,-40)],
 relative=True)
 # Continue curve accross bottom-right
 draw.path_curve(to=(40, 0),
 controls=(30, 40),
 smooth=True,
 relative=True)
 # Line to top-right
 draw.path_vertical_line(10)
 # Diagonal line to bottom-left
 draw.path_line(to=(10, 90))
 # Close first & last points
 draw.path_close()
 draw.path_finish()
 with Image(width=100, height=100, background=Color('lightblue')) as image:
 draw(image)

[image: draw-path.gif]

Point

New in version 0.4.0.

You can draw points by using point() method.
It simply takes two x, y arguments for the point coordinate.

The following example will draw points following a math function across a given
image:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color
import math

with Drawing() as draw:
 for x in xrange(0, 100):
 y = math.tan(x) * 4
 draw.point(x, y + 50)
 with Image(width=100, height=100, background=Color('lightblue')) as image:
 draw(image)

[image: draw-point-math.gif]
Color of the point can be defined by setting the following property

	fill_color

Polygon

New in version 0.4.0.

Complex shapes can be created with the polygon()
method. You can draw a polygon by given this method a list of points. Stroke
line will automatically close between first & last point.

For example, the following code will draw a triangle into the image:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
 draw.stroke_width = 2
 draw.stroke_color = Color('black')
 draw.fill_color = Color('white')
 points = [(25, 25), (75, 50), (25, 75)]
 draw.polygon(points)
 with Image(width=100, height=100, background=Color('lightblue')) as image:
 draw(image)

[image: draw-polygon.gif]
Control the fill & stroke with the following properties:

	stroke_color

	stroke_dash_array

	stroke_dash_offset

	stroke_line_cap

	stroke_line_join

	stroke_miter_limit

	stroke_opacity

	stroke_width

	fill_color

	fill_opacity

	fill_rule

Polyline

New in version 0.4.0.

Identical to polygon(), except
polyline() will not close the stroke line
between the first & last point.

For example, the following code will draw a two line path on the image:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
 draw.stroke_width = 2
 draw.stroke_color = Color('black')
 draw.fill_color = Color('white')
 points = [(25, 25), (75, 50), (25, 75)]
 draw.polyline(points)
 with Image(width=100, height=100, background=Color('lightblue')) as image:
 draw(image)

[image: draw-polyline.gif]
Control the fill & stroke with the following properties:

	stroke_color

	stroke_dash_array

	stroke_dash_offset

	stroke_line_cap

	stroke_line_join

	stroke_miter_limit

	stroke_opacity

	stroke_width

	fill_color

	fill_opacity

	fill_rule

Push & Pop

When working with complex vector graphics, you can use ImageMagick’s internal
graphic-context stack to manage different styles & operations. The methods
push(), push_clip_path(),
push_defs(), and push_pattern()
are used to mark the beginning of a sub-routine. The clip path & pattern methods
take a name based identifier argument, and can be referenced at a latter point
with clip_path, or
set_fill_pattern_url() /
set_stroke_pattern_url()
respectively. With stack management, pop() is used
to mark the end of a sub-routine, and return the graphical context to its
pervious state before push() was invoked.
Methods pop_clip_path(),
pop_defs(), and pop_pattern()
exist to match there pop counterparts.

from wand.color import Color
from wand.image import Image
from wand.drawing import Drawing
from wand.compat import nested
from math import cos, pi, sin

with nested(Color('lightblue'),
 Color('transparent'),
 Drawing()) as (bg, fg, draw):
 draw.stroke_width = 3
 draw.fill_color = fg
 for degree in range(0, 360, 15):
 draw.push() # Grow stack
 draw.stroke_color = Color('hsl({0}%, 100%, 50%)'.format(degree * 100 / 360))
 t = degree / 180.0 * pi
 x = 35 * cos(t) + 50
 y = 35 * sin(t) + 50
 draw.line((50, 50), (x, y))
 draw.pop() # Restore stack
 with Image(width=100, height=100, background=Color('lightblue')) as img:
 draw(img)

[image: ../_images/draw-push-pop.gif]

Rectangles

New in version 0.3.6.

Changed in version 0.4.0.

If you want to draw rectangles use rectangle()
method. It takes left/top coordinate, and right/bottom
coordinate, or width and height. For example, the following code
draws a square on the image:

draw.rectangle(left=10, top=10, right=40, bottom=40)
draw(image)

Or using width and height instead of right and bottom:

draw.rectangle(left=10, top=10, width=30, height=30)
draw(image)

Support for rounded corners was added in version 0.4.0. The radius argument
sets corner rounding.

draw.rectangle(left=10, top=10, width=30, height=30, radius=5)
draw(image)

Both horizontal & vertical can be set independently with
xradius & yradius respectively.

draw.rectangle(left=10, top=10, width=30, height=30, xradius=5, yradius=3)
draw(image)

Note that the stoke and the fill are determined by the following properties:

	stroke_color

	stroke_dash_array

	stroke_dash_offset

	stroke_line_cap

	stroke_line_join

	stroke_miter_limit

	stroke_opacity

	stroke_width

	fill_color

	fill_opacity

	fill_rule

Texts

Drawing object can write texts as well using its
text() method. It takes x and y
coordinates to be drawn and a string to write:

draw.font = 'wandtests/assets/League_Gothic.otf'
draw.font_size = 40
draw.text(image.width / 2, image.height / 2, 'Hello, world!')
draw(image)

As the above code shows you can adjust several settings before writing texts:

	font

	font_family

	font_resolution

	font_size

	font_stretch

	font_style

	font_weight

	gravity

	text_alignment

	text_antialias

	text_decoration

	text_direction

	text_interline_spacing

	text_interword_spacing

	text_kerning

	text_under_color

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Colorspace

Image types

Every Image object has type
property which identifies its colorspace. The value can be one of
IMAGE_TYPES enumeration, and set of its available
values depends on its format as well. For example,
'grayscale' isn’t available on JPEG.

>>> from wand.image import Image
>>> with Image(filename='wandtests/assets/bilevel.gif') as img:
... img.type
...
'bilevel'
>>> with Image(filename='wandtests/assets/sasha.jpg') as img2:
... img2.type
...
'truecolor'

You can change this value:

with Image(filename='wandtests/assets/bilevel.gif') as img:
 img.type = 'truecolor'
 img.save(filename='truecolor.gif')

See also

	-type [http://www.imagemagick.org/script/command-line-options.php#type] — ImageMagick: command-line-Options

	Corresponding command-line option of convert program.

Enable alpha channel

You can find whether an image has alpha channel and change it to have or
not to have the alpha channel using alpha_channel
property, which is preserving a bool [http://docs.python.org/library/functions.html#bool] value.

>>> with Image(filename='wandtests/assets/sasha.jpg') as img:
... img.alpha_channel
...
False
>>> with Image(filename='wandtests/assets/croptest.png') as img:
... img.alpha_channel
...
True

It’s a writable property:

with Image(filename='wandtests/assets/sasha.jpg') as img:
 img.alpha_channel = True

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Reading EXIF

New in version 0.3.0.

Image.metadata contains metadata
of the image including EXIF. These are prefixed by 'exif:'
e.g. 'exif:ExifVersion', 'exif:Flash'.

Here’s a straightforward example to access EXIF of an image:

exif = {}
with Image(filename='wandtests/assets/beach.jpg') as image:
 exif.update((k[5:], v) for k, v in image.metadata.items()
 if k.startswith('exif:'))

Note

You can’t write into Image.metadata.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Sequence

Note

The image sequence-animation.gif used in this docs
has been released into the public domain by its author,
C6541 [http://en.wikipedia.org/wiki/User:C6541] at Wikipedia [http://en.wikipedia.org/wiki/] project. This applies worldwide. (Source [http://commons.wikimedia.org/wiki/File:1.3-B.gif])

New in version 0.3.0.

Some images may actually consist of two or more images. For example,
animated image/gif images consist of multiple frames.
Some image/ico images have different sizes of icons.

[image: sequence-animation.gif]
For example, the above image sequence-animation.gif consists
of the following frames (actually it has 60 frames, but we sample only
few frames to show here):

[image: frames of sequence-animation.gif]

sequence is a Sequence [http://docs.python.org/library/collections.html#collections.Sequence]

If we open this image, Image object
has sequence. It’s a list-like object
that maintain its all frames.

For example, len() [http://docs.python.org/library/functions.html#len] for this returns the number of frames:

>>> from wand.image import Image
>>> with Image(filename='sequence-animation.gif') as image:
... len(image.sequence)
...
60

You can get an item by index from sequence:

>>> with Image(filename='sequence-animation.gif') as image:
... image.sequence[0]
...
<wand.sequence.SingleImage: ed84c1b (256x256)>

Or slice it:

>>> with Image(filename='sequence-animation.gif') as image:
... image.sequence[5:10]
...
[<wand.sequence.SingleImage: 0f49491 (256x256)>,
 <wand.sequence.SingleImage: 8eba0a5 (256x256)>,
 <wand.sequence.SingleImage: 98c10fa (256x256)>,
 <wand.sequence.SingleImage: b893194 (256x256)>,
 <wand.sequence.SingleImage: 181ce21 (256x256)>]

Image versus SingleImage

Note that each item of sequence is a
SingleImage instance, not Image.

Image is a container that directly represents
image files like sequence-animation.gif, and
SingleImage is a single image that represents
frames in animations or sizes in image/ico files.

They both inherit BaseImage, the common abstract class.
They share the most of available operations and properties like
resize() and size,
but some are not. For example, save() and
mimetype are only provided by
Image. delay and
index are only available for
SingleImage.

In most cases, images don’t have multiple images, so it’s okay if you think
that Image and SingleImage are
the same, but be careful when you deal with animated image/gif
files or image/ico files that contain multiple icons.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Resource management

See also

	wand.resource — Global resource management

	There is the global resource to manage in MagickWand API.
This module implements automatic global resource management through
reference counting.

Objects Wand provides are resources to be managed. It has to be closed
(destroyed) after using like file or database connection. You can deal
with it using with [http://docs.python.org/reference/compound_stmts.html#with] very easily and explicitly:

with Image(filename='') as img:
 # deal with img...

Or you can call its destroy() (or
close() if it is an Image
instance) method manually:

try:
 img = Image(filename='')
 # deal with img...
finally:
 img.destroy()

Note

It also implements the destructor that invokes
destroy(), and if your program runs on
CPython (which does reference counting instead of ordinary garbage
collection) most of resources are automatically deallocated.

However it’s just depending on CPython’s implementation detail of
memory management, so it’s not a good idea. If your program
runs on PyPy (which implements garbage collector) for example,
invocation time of destructors is not determined, so the program
would be broken.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Running tests

Wand has unit tests and regression tests. It can be run using
setup.py script:

$ python setup.py test

It uses pytest [http://pytest.org/] as its testing library. The above command will automatically
install pytest as well if it’s not installed yet.

Or you can manually install pytest and then use py.test command.
It provides more options:

$ pip install pytest
$ py.test

Skipping tests

There are some time-consuming tests. You can skip these tests using
--skip-slow option:

$ py.test --skip-slow

You can run only tests you want using -k option.

$ py.test -k image

Using tox [http://tox.testrun.org/]

Wand should be compatible with various Python implementations including
CPython 2.6, 2.7, PyPy. tox [http://tox.testrun.org/] is a testing software that helps Python
packages to test on various Python implementations at a time.

It can be installed using easy_install or pip:

$ easy_install tox

If you type just tox at Wand directory it will be tested
on multiple Python interpreters:

$ tox
GLOB sdist-make: /Users/dahlia/Desktop/wand/setup.py
py26 create: /Users/dahlia/Desktop/wand/.tox/py26
py26 installdeps: pytest
py26 sdist-inst: /Users/dahlia/Desktop/wand/.tox/dist/Wand-0.2.2.zip
py26 runtests: commands[0]
...

You can use a double -- to pass options to pytest:

$ tox -- -k sequence

Continuous Integration

[image: Build Status]
 [https://travis-ci.org/dahlia/wand]Travis CI [http://travis-ci.org/] automatically builds and tests every commit and pull request.
The above banner image shows the current status of Wand build.
You can see the detail of the current status from the following URL:

https://travis-ci.org/dahlia/wand

Code Coverage

[image: Coverage Status]
 [https://coveralls.io/r/dahlia/wand]Coveralls [https://coveralls.io/] support tracking Wand’s test coverage. The above banner image
shows the current status of Wand coverage. You can see the details of the
current status from the following URL:

https://coveralls.io/r/dahlia/wand

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Roadmap

Version 0.4

	CFFI

	Wand 0.4 will move to CFFI from ctypes.

	Image layers (#22 [https://github.com/dahlia/wand/issues/22])

	Wand 0.4 will be able to deal with layers of an image.

Its branch name will be layer [https://github.com/dahlia/wand/compare/master...layer].

Very future versions

	PIL compatibility layer

	PIL has very long history and the most of Python projects still
depend on it. We will work on PIL compatibility layer using Wand.
It will provide two ways to emulate PIL:

	Module-level compatibility which can be used by changing
import [http://docs.python.org/reference/simple_stmts.html#import]:

try:
 from wand.pilcompat import Image
except ImportError:
 from PIL import Image

	Global monkeypatcher which changes sys.modules:

from wand.pilcompat.monkey import patch; patch()
import PIL.Image # it imports wand.pilcompat.Image module

	CLI (covert command) to Wand compiler (#100 [https://github.com/dahlia/wand/issues/100])

	Primary interface of ImageMagick is convert command.
It provides a small parameter language, and many answers on the Web
contain code using this. The problem is that you can’t simply
copy-and-paste these code to utilize Wand.

This feature is to make these CLI codes possible to be used with Wand.

	Supporting __array_interface__() for NumPy (#65 [https://github.com/dahlia/wand/issues/65])

	It makes numpy.asarray() able to take Image
object to deal with its pixels as matrix.

Its branch name will be numpy [https://github.com/dahlia/wand/compare/master...numpy].

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Wand Changelog

0.3 series

Version 0.3.10

To be released.

	Error message of MissingDelegateError raised by
Image.liquid_rescale()
became nicer.

Version 0.3.9

Released on December 20, 2014.

	Added 'pdf:use-cropbox' option to Image.options dictionary (and OPTIONS
constant). [#185 [https://github.com/dahlia/wand/issues/185] by Christoph Neuroth]

	Fixed a bug that exception message was bytes instead of
str [http://docs.python.org/library/functions.html#str] on Python 3.

	The size parameter of Font class becomes optional.
Its default value is 0, which means autosized.
[#191 [https://github.com/dahlia/wand/issues/191] by Cha, Hojeong]

	Fixed a bug that Image.read() had tried
using MagickReadImageFile() even when the given file object
has no mode attribute. [#205 [https://github.com/dahlia/wand/issues/205] by Stephen J. Fuhry]

Version 0.3.8

Released on August 3, 2014.

	Fixed a bug that transparent background becomes filled with white
when SVG is converted to other bitmap image format like PNG. [#184 [https://github.com/dahlia/wand/issues/184]]

	Added Image.negate() method.
[#174 [https://github.com/dahlia/wand/issues/174] by Park Joon-Kyu]

	Fixed a segmentation fault on Image.modulate() method.
[#173 [https://github.com/dahlia/wand/issues/173] by Ted Fung, #158 [https://github.com/dahlia/wand/issues/158]]

	Added suggestion to install freetype also if Homebrew is used.
[#141 [https://github.com/dahlia/wand/issues/141]]

	Now image/x-gif also is determined as animation.
[#181 [https://github.com/dahlia/wand/issues/181] by Juan-Pablo Scaletti]

Version 0.3.7

Released on March 25, 2014.

	A hotfix of debug prints made at 0.3.6.

Version 0.3.6

Released on March 23, 2014.

	Added Drawing.rectangle() method.
Now you can draw rectangles. [#159 [https://github.com/dahlia/wand/issues/159]]

	Added Image.compression property.
[#171 [https://github.com/dahlia/wand/issues/171]]

	Added contextlib.nested() [http://docs.python.org/library/contextlib.html#contextlib.nested] function to wand.compat module.

	Fixed UnicodeEncodeError when Drawing.text() method gives Unicode text argument
in Python 2. [#163 [https://github.com/dahlia/wand/issues/163]]

	Now it now allows to use Wand when Python is invoked with the -OO flag.
[#169 [https://github.com/dahlia/wand/issues/169] by Samuel Maudo]

Version 0.3.5

Released on September 13, 2013.

	Fix segmentation fault on Image.save() method.
[#150 [https://github.com/dahlia/wand/issues/150]]

Version 0.3.4

Released on September 9, 2013.

	Added Image.modulate() method.
[#134 [https://github.com/dahlia/wand/issues/134] by Dan P. Smith]

	Added Image.colorspace property.
[#135 [https://github.com/dahlia/wand/issues/135] by Volodymyr Kuznetsov]

	Added Image.unsharp_mask()
method. [#136 [https://github.com/dahlia/wand/issues/136] by Volodymyr Kuznetsov]

	Added 'jpeg:sampling-factor' option to Image.options dictionary (and OPTIONS
constant). [#137 [https://github.com/dahlia/wand/issues/137] by Volodymyr Kuznetsov]

	Fixed ImageMagick shared library resolution on Arch Linux.
[#139 [https://github.com/dahlia/wand/issues/139], #140 [https://github.com/dahlia/wand/issues/140] by Sergey Tereschenko]

	Added Image.sample() method.
[#142 [https://github.com/dahlia/wand/issues/142] by Michael Allen]

	Fixed a bug that Image.save() preserves
only one frame of the given animation when file-like object is passed.
[#143 [https://github.com/dahlia/wand/issues/143], #145 [https://github.com/dahlia/wand/issues/145] by Michael Allen]

	Fixed searching of ImageMagick shared library with HDR support enabled.
[#148 [https://github.com/dahlia/wand/issues/148], #149 [https://github.com/dahlia/wand/issues/149] by Lipin Dmitriy]

Version 0.3.3

Released on August 4, 2013. It’s author’s birthday.

	Added Image.gaussian_blur()
method.

	Added Drawing.stroke_color
property. [#129 [https://github.com/dahlia/wand/issues/129] by Zeray Rice]

	Added Drawing.stroke_width
property. [#130 [https://github.com/dahlia/wand/issues/130] by Zeray Rice]

	Fixed a memory leak of Color class.
[#127 [https://github.com/dahlia/wand/issues/127] by Wieland Morgenstern]

	Fixed a bug that Image.save() to stream
truncates data. [#128 [https://github.com/dahlia/wand/issues/128] by Michael Allen]

	Fixed broken display() on Python 3.
[#126 [https://github.com/dahlia/wand/issues/126]]

Version 0.3.2

Released on July 11, 2013.

	Fixed incorrect encoding of filenames. [#122 [https://github.com/dahlia/wand/issues/122]]

	Fixed key type of Image.metadata
dictionary to str [http://docs.python.org/library/functions.html#str] from bytes in Python 3.

	Fixed CentOS compatibility [#116 [https://github.com/dahlia/wand/issues/116], #124 [https://github.com/dahlia/wand/issues/124] by Pierre Vanliefland]
	Made DrawSetTextInterlineSpacing() and
DrawGetTextInterlineSpacing() optional.

	Added exception in drawing API when trying to use
DrawSetTextInterlineSpacing() and
DrawGetTextInterlineSpacing() functions when they are not
available.

	Added WandLibraryVersionError class for
library versions issues.

Version 0.3.1

Released on June 23, 2013.

	Fixed ImportError [http://docs.python.org/library/exceptions.html#exceptions.ImportError] on Windows.

Version 0.3.0

Released on June 17, 2013.

See also

	What’s new in Wand 0.3?

	This guide introduces what’s new in Wand 0.3.

	Now also works on Python 2.6, 2.7, and 3.2 or higher.

	Added wand.drawing module. [#64 [https://github.com/dahlia/wand/issues/64] by Adrian Jung]

	Added Drawing.get_font_metrics() method.
[#69 [https://github.com/dahlia/wand/issues/69], #71 [https://github.com/dahlia/wand/issues/71] by Cha, Hojeong]

	Added Image.caption() method.
[#74 [https://github.com/dahlia/wand/issues/74] by Cha, Hojeong]

	Added optional color parameter to Image.trim() method.

	Added Image.border() method.
[2496d37f75d75e9425f95dde07033217dc8afefc [https://github.com/dahlia/wand/commit/2496d37f75d75e9425f95dde07033217dc8afefc] by Jae-Myoung Yu]

	Added resolution parameter to Image.read()
method and the constructor of Image.
[#75 [https://github.com/dahlia/wand/issues/75] by Andrey Antukh]

	Added Image.liquid_rescale()
method which does seam carving [http://en.wikipedia.org/wiki/Seam_carving]. See also Seam carving (also known as content-aware resizing).

	Added Image.metadata immutable mapping
attribute and Metadata mapping type for it.
[#56 [https://github.com/dahlia/wand/issues/56] by Michael Elovskikh]

	Added Image.channel_images
immutable mapping attribute and ChannelImageDict
mapping for it.

	Added Image.channel_depths
immutable mapping attribute and ChannelDepthDict
mapping for it.

	Added Image.composite_channel() method.

	Added Image.read() method.
[#58 [https://github.com/dahlia/wand/issues/58] by Piotr Florczyk]

	Added Image.resolution property.
[#58 [https://github.com/dahlia/wand/issues/58] by Piotr Florczyk]

	Added Image.blank() method.
[#60 [https://github.com/dahlia/wand/issues/60] by Piotr Florczyk]

	Fixed several memory leaks. [#62 [https://github.com/dahlia/wand/issues/62] by Mitch Lindgren]

	Added ImageProperty mixin class to maintain
a weak reference to the parent image.

	Ranamed wand.image.COMPOSITE_OPS to
COMPOSITE_OPERATORS.

	Now it shows helpful error message when ImageMagick library cannot be
found.

	Added IPython-specialized formatter.

	Added QUANTUM_DEPTH constant.

	Added these properties to Color class:
	red_quantum

	green_quantum

	blue_quantum

	alpha_quantum

	red_int8

	green_int8

	blue_int8

	alpha_int8

	Added Image.normalize() method.
[#95 [https://github.com/dahlia/wand/issues/95] by Michael Curry]

	Added Image.transparent_color() method.
[#98 [https://github.com/dahlia/wand/issues/98] by Lionel Koenig]

	Started supporting resizing and cropping of GIF images.
[#88 [https://github.com/dahlia/wand/issues/88] by Bear Dong, #112 [https://github.com/dahlia/wand/issues/112] by Taeho Kim]

	Added Image.flip() method.

	Added Image.flop() method.

	Added Image.orientation property.
[88574468a38015669dae903185fb328abdd717c0 [https://github.com/dahlia/wand/commit/88574468a38015669dae903185fb328abdd717c0] by Taeho Kim]

	wand.resource.DestroyedResourceError becomes a subtype of
wand.exceptions.WandException.

	Color is now hashable, so can be used as a key of
dictionaries, or an element of sets. [#114 [https://github.com/dahlia/wand/issues/114] by klutzy]

	Color has normalized_string
property.

	Image has histogram
dictionary.

	Added optional fuzz parameter to Image.trim() method. [#113 [https://github.com/dahlia/wand/issues/113] by Evaldo Junior]

0.2 series

Version 0.2.4

Released on May 28, 2013.

	Fix NameError [http://docs.python.org/library/exceptions.html#exceptions.NameError] in Resource.resource setter.
[#89 [https://github.com/dahlia/wand/issues/89] forwareded from Debian bug report #699064 [http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=699064]
by Jakub Wilk]

	Fix the problem of library loading for Mac with Homebrew and Arch Linux.
[#102 [https://github.com/dahlia/wand/issues/102] by Roel Gerrits, #44 [https://github.com/dahlia/wand/issues/44]]

Version 0.2.3

Released on January 25, 2013.

	Fixed a bug that Image.transparentize() method (and Image.watermark() method which internally uses it) didn’t
work.

	Fixed segmentation fault occurred when Color.red, Color.green,
or Color.blue is accessed.

	Added Color.alpha property.

	Fixed a bug that format converting using Image.format property or Image.convert() method doesn’t correctly work
to save blob.

Version 0.2.2

Released on September 24, 2012.

	A compatibility fix for FreeBSD.
[Patch [http://olivier-freebsd-ports.googlecode.com/hg-history/efb852a5572/graphics/py-wand/files/patch-wand_api.py] by Olivier Duchateau]

	Now Image can be instantiated without any opening.
Instead, it can take width/height and background.
[#53 [https://github.com/dahlia/wand/issues/53] by Michael Elovskikh]

	Added Image.transform() method
which is a convenience method accepting geometry strings to perform
cropping and resizing.
[#50 [https://github.com/dahlia/wand/issues/50] by Mitch Lindgren]

	Added Image.units property.
[#45 [https://github.com/dahlia/wand/issues/45] by Piotr Florczyk]

	Now Image.resize() method raises
a proper error when it fails for any reason.
[#41 [https://github.com/dahlia/wand/issues/41] by Piotr Florczyk]

	Added Image.type property.
[#33 [https://github.com/dahlia/wand/issues/33] by Yauhen Yakimovich, #42 [https://github.com/dahlia/wand/issues/42] by Piotr Florczyk]

Version 0.2.1

Released on August 19, 2012. Beta version.

	Added Image.trim() method.
[#26 [https://github.com/dahlia/wand/issues/26] by Jökull Sólberg Auðunsson]

	Added Image.depth property.
[#31 [https://github.com/dahlia/wand/issues/31] by Piotr Florczyk]

	Now Image can take an optional format hint.
[#32 [https://github.com/dahlia/wand/issues/32] by Michael Elovskikh]

	Added Image.alpha_channel
property. [#35 [https://github.com/dahlia/wand/issues/35] by Piotr Florczyk]

	The default value of Image.resize()‘s
filter option has changed from 'triangle' to 'undefined'.
[#37 [https://github.com/dahlia/wand/issues/37] by Piotr Florczyk]

	Added version data of the linked ImageMagick library into wand.version
module:
	MAGICK_VERSION (GetMagickVersion())

	MAGICK_VERSION_INFO (GetMagickVersion())

	MAGICK_VERSION_NUMBER (GetMagickVersion())

	MAGICK_RELEASE_DATE (GetMagickReleaseDate())

	MAGICK_RELEASE_DATE_STRING
(GetMagickReleaseDate())

Version 0.2.0

Released on June 20, 2012. Alpha version.

	Added Image.transparentize() method.
[#19 [https://github.com/dahlia/wand/issues/19] by Jeremy Axmacher]

	Added Image.composite() method.
[#19 [https://github.com/dahlia/wand/issues/19] by Jeremy Axmacher]

	Added Image.watermark() method.
[#19 [https://github.com/dahlia/wand/issues/19] by Jeremy Axmacher]

	Added Image.quantum_range property.
[#19 [https://github.com/dahlia/wand/issues/19] by Jeremy Axmacher]

	Added Image.reset_coords() method
and reset_coords option to Image.rotate() method. [#20 [https://github.com/dahlia/wand/issues/20] by Juan Pablo Scaletti]

	Added Image.strip() method.
[#23 [https://github.com/dahlia/wand/issues/23] by Dmitry Vukolov]

	Added Image.compression_quality
property. [#23 [https://github.com/dahlia/wand/issues/23] by Dmitry Vukolov]

	Now the current version can be found from the command line interface:
python -m wand.version.

0.1 series

Version 0.1.10

Released on May 8, 2012. Still alpha version.

	So many Windows compatibility issues are fixed. [#14 [https://github.com/dahlia/wand/issues/14] by John Simon]

	Added wand.api.libmagick.

	Fixed a bug that raises AttributeError [http://docs.python.org/library/exceptions.html#exceptions.AttributeError] when it’s trying
to warn. [#16 [https://github.com/dahlia/wand/issues/16] by Tim Dettrick]

	Now it throws ImportError [http://docs.python.org/library/exceptions.html#exceptions.ImportError] instead of
AttributeError [http://docs.python.org/library/exceptions.html#exceptions.AttributeError] when the shared library fails
to load. [#17 [https://github.com/dahlia/wand/issues/17] by Kieran Spear]

	Fixed the example usage on index page of the documentation.
[#18 [https://github.com/dahlia/wand/issues/18] by Jeremy Axmacher]

Version 0.1.9

Released on December 23, 2011. Still alpha version.

	Now wand.version.VERSION_INFO becomes tuple and
wand.version.VERSION becomes a string.

	Added Image.background_color
property.

	Added == operator for Image type.

	Added hash() [http://docs.python.org/library/functions.html#hash] support of Image type.

	Added Image.signature property.

	Added wand.display module.

	Changed the theme of Sphinx documentation.

	Changed the start example of the documentation.

Version 0.1.8

Released on December 2, 2011. Still alpha version.

	Wrote some guide documentations: Reading images, Writing images and
Resizing and cropping.

	Added Image.rotate() method for in-place
rotation.

	Made Image.crop() to raise proper
ValueError instead of IndexError for invalid width/height
arguments.

	Changed the type of Image.resize()
method’s blur parameter from numbers.Rational [http://docs.python.org/library/numbers.html#numbers.Rational] to
numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real].

	Fixed a bug of raising ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError] when invalid filter
has passed to Image.resize() method.

Version 0.1.7

Released on November 10, 2011. Still alpha version.

	Added Image.mimetype property.

	Added Image.crop() method for in-place
crop.

Version 0.1.6

Released on October 31, 2011. Still alpha version.

	Removed a side effect of Image.make_blob() method that changes the image format silently.

	Added Image.format property.

	Added Image.convert() method.

	Fixed a bug about Python 2.6 compatibility.

	Use the internal representation of PixelWand instead of
the string representaion for Color type.

Version 0.1.5

Released on October 28, 2011. Slightly mature alpha version.

	Now Image can read Python file objects by file
keyword argument.

	Now Image.save() method can write into
Python file objects by file keyword argument.

	Image.make_blob()‘s format
argument becomes omittable.

Version 0.1.4

Released on October 27, 2011. Hotfix of the malformed Python package.

Version 0.1.3

Released on October 27, 2011. Slightly mature alpha version.

	Pixel getter for Image.

	Row getter for Image.

	Mac compatibility.

	Windows compatibility.

	64-bit processor compatibility.

Version 0.1.2

Released on October 16, 2011. Still alpha version.

	Image implements iterable interface.

	Added wand.color module.

	Added the abstract base class of all Wand resource objects:
wand.resource.Resource.

	Image implements slicing.

	Cropping Image using its slicing operator.

Version 0.1.1

Released on October 4, 2011. Still alpha version.

	Now it handles errors and warnings properly and in natural way of Python.

	Added Image.make_blob() method.

	Added blob parameter into Image constructor.

	Added Image.resize() method.

	Added Image.save() method.

	Added Image.clone() method.

	Drawed the pretty logo picture
(thanks to Hyojin Choi [http://me2day.net/crocodile]).

Version 0.1.0

Released on October 1, 2011. Very alpha version.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Talks and Presentations

Talks in 2012

	Lightning talk at Python Korea November 2012 [http://j.mp/pykr2012-wand]

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

wand — Simple MagickWand API [http://www.imagemagick.org/script/magick-wand.php] binding for Python

	wand.image — Image objects

	wand.color — Colors

	wand.font — Fonts

	wand.drawing — Drawings

	wand.sequence — Sequences

	wand.resource — Global resource management

	wand.exceptions — Errors and warnings

	wand.api — Low-level interfaces

	wand.compat — Compatibility layer

	wand.display — Displaying images

	wand.version — Version data

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.image — Image objects

Opens and manipulates images. Image objects can be used in with [http://docs.python.org/reference/compound_stmts.html#with]
statement, and these resources will be automatically managed (even if any
error happened):

with Image(filename='pikachu.png') as i:
 print('width =', i.width)
 print('height =', i.height)

	
wand.image.ALPHA_CHANNEL_TYPES = ('undefined', 'activate', 'background', 'copy', 'deactivate', 'extract', 'opaque', 'reset', 'set', 'shape', 'transparent', 'flatten', 'remove')

	(tuple) The list of alpha channel types

	'undefined'

	'activate'

	'background'

	'copy'

	'deactivate'

	'extract'

	'opaque'

	'reset'

	'set'

	'shape'

	'transparent'

	'flatten'

	'remove'

See also

	ImageMagick Image Channel [http://www.imagemagick.org/api/channel.php#SetImageAlphaChannel]

	Describes the SetImageAlphaChannel method which can be used
to modify alpha channel. Also describes AlphaChannelType

	
wand.image.CHANNELS = {'opacity': 8, 'true_alpha': 64, 'gray': 1, 'rgb_channels': 128, 'yellow': 4, 'sync_channels': 256, 'default_channels': 134217719, 'alpha': 8, 'cyan': 1, 'magenta': 2, 'undefined': 0, 'blue': 4, 'index': 32, 'gray_channels': 128, 'composite_channels': 47, 'green': 2, 'all_channels': 134217727, 'black': 32, 'red': 1}

	(dict [http://docs.python.org/library/stdtypes.html#dict]) The dictionary of channel types.

	'undefined'

	'red'

	'gray'

	'cyan'

	'green'

	'magenta'

	'blue'

	'yellow'

	'alpha'

	'opacity'

	'black'

	'index'

	'composite_channels'

	'all_channels'

	'true_alpha'

	'rgb_channels'

	'gray_channels'

	'sync_channels'

	'default_channels'

See also

	ImageMagick Color Channels [http://www.imagemagick.org/Magick++/Enumerations.html#ChannelType]

	Lists the various channel types with descriptions of each

	
wand.image.COLORSPACE_TYPES = ('undefined', 'rgb', 'gray', 'transparent', 'ohta', 'lab', 'xyz', 'ycbcr', 'ycc', 'yiq', 'ypbpr', 'yuv', 'cmyk', 'srgb', 'hsb', 'hsl', 'hwb', 'rec601luma', 'rec601ycbcr', 'rec709luma', 'rec709ycbcr', 'log', 'cmy', 'luv', 'hcl', 'lch', 'lms', 'lchab', 'lchuv', 'scrgb', 'hsi', 'hsv', 'hclp', 'ydbdr')

	(tuple) The list of colorspaces.

	'undefined'

	'rgb'

	'gray'

	'transparent'

	'ohta'

	'lab'

	'xyz'

	'ycbcr'

	'ycc'

	'yiq'

	'ypbpr'

	'yuv'

	'cmyk'

	'srgb'

	'hsb'

	'hsl'

	'hwb'

	'rec601luma'

	'rec601ycbcr'

	'rec709luma'

	'rec709ycbcr'

	'log'

	'cmy'

	'luv'

	'hcl'

	'lch'

	'lms'

	'lchab'

	'lchuv'

	'scrgb'

	'hsi'

	'hsv'

	'hclp'

	'ydbdr'

See also

	ImageMagick Color Management [http://www.imagemagick.org/script/color-management.php]

	Describes the ImageMagick color management operations

New in version 0.3.4.

	
wand.image.COMPOSITE_OPERATORS = ('undefined', 'no', 'add', 'atop', 'blend', 'bumpmap', 'change_mask', 'clear', 'color_burn', 'color_dodge', 'colorize', 'copy_black', 'copy_blue', 'copy', 'copy_cyan', 'copy_green', 'copy_magenta', 'copy_opacity', 'copy_red', 'copy_yellow', 'darken', 'dst_atop', 'dst', 'dst_in', 'dst_out', 'dst_over', 'difference', 'displace', 'dissolve', 'exclusion', 'hard_light', 'hue', 'in', 'lighten', 'linear_light', 'luminize', 'minus', 'modulate', 'multiply', 'out', 'over', 'overlay', 'plus', 'replace', 'saturate', 'screen', 'soft_light', 'src_atop', 'src', 'src_in', 'src_out', 'src_over', 'subtract', 'threshold', 'xor', 'divide')

	(tuple) The list of composition operators

	'undefined'

	'no'

	'add'

	'atop'

	'blend'

	'bumpmap'

	'change_mask'

	'clear'

	'color_burn'

	'color_dodge'

	'colorize'

	'copy_black'

	'copy_blue'

	'copy'

	'copy_cyan'

	'copy_green'

	'copy_magenta'

	'copy_opacity'

	'copy_red'

	'copy_yellow'

	'darken'

	'dst_atop'

	'dst'

	'dst_in'

	'dst_out'

	'dst_over'

	'difference'

	'displace'

	'dissolve'

	'exclusion'

	'hard_light'

	'hue'

	'in'

	'lighten'

	'linear_light'

	'luminize'

	'minus'

	'modulate'

	'multiply'

	'out'

	'over'

	'overlay'

	'plus'

	'replace'

	'saturate'

	'screen'

	'soft_light'

	'src_atop'

	'src'

	'src_in'

	'src_out'

	'src_over'

	'subtract'

	'threshold'

	'xor'

	'divide'

Changed in version 0.3.0: Renamed from COMPOSITE_OPS to COMPOSITE_OPERATORS.

See also

	Compositing Images [http://www.imagemagick.org/Usage/compose/] ImageMagick v6 Examples

	Image composition is the technique of combining images that have,
or do not have, transparency or an alpha channel.
This is usually performed using the IM composite command.
It may also be performed as either part of a larger sequence of
operations or internally by other image operators.

	ImageMagick Composition Operators [http://www.rubblewebs.co.uk/imagemagick/operators/compose.php]

	Demonstrates the results of applying the various composition
composition operators.

	
wand.image.COMPRESSION_TYPES = ('undefined', 'b44a', 'b44', 'bzip', 'dxt1', 'dxt3', 'dxt5', 'fax', 'group4', 'jbig1', 'jbig2', 'jpeg2000', 'jpeg', 'losslessjpeg', 'lzma', 'lzw', 'no', 'piz', 'pxr24', 'rle', 'zip', 'zips')

	(tuple) The list of Image.compression types.

New in version 0.3.6.

	
wand.image.EVALUATE_OPS = ('undefined', 'add', 'and', 'divide', 'leftshift', 'max', 'min', 'multiply', 'or', 'rightshift', 'set', 'subtract', 'xor', 'pow', 'log', 'threshold', 'thresholdblack', 'thresholdwhite', 'gaussiannoise', 'impulsenoise', 'laplaciannoise', 'multiplicativenoise', 'poissonnoise', 'uniformnoise', 'cosine', 'sine', 'addmodulus', 'mean', 'abs', 'exponential', 'median', 'sum')

	(tuple) The list of evaluation operators

	'undefined'

	'add'

	'and'

	'divide'

	'leftshift'

	'max'

	'min'

	'multiply'

	'or'

	'rightshift'

	'set'

	'subtract'

	'xor'

	'pow'

	'log'

	'threshold'

	'thresholdblack'

	'thresholdwhite'

	'gaussiannoise'

	'impulsenoise'

	'laplaciannoise'

	'multiplicativenoise'

	'poissonnoise'

	'uniformnoise'

	'cosine'

	'sine'

	'addmodulus'

	'mean'

	'abs'

	'exponential'

	'median'

	'sum'

See also

	ImageMagick Image Evaluation Operators [http://www.magickwand.org/MagickEvaluateImage.html]

	Describes the MagickEvaluateImageChannel method and lists the
various evaluations operators

	
wand.image.FILTER_TYPES = ('undefined', 'point', 'box', 'triangle', 'hermite', 'hanning', 'hamming', 'blackman', 'gaussian', 'quadratic', 'cubic', 'catrom', 'mitchell', 'jinc', 'sinc', 'sincfast', 'kaiser', 'welsh', 'parzen', 'bohman', 'bartlett', 'lagrange', 'lanczos', 'lanczossharp', 'lanczos2', 'lanczos2sharp', 'robidoux', 'robidouxsharp', 'cosine', 'spline', 'sentinel')

	(tuple) The list of filter types.

	'undefined'

	'point'

	'box'

	'triangle'

	'hermite'

	'hanning'

	'hamming'

	'blackman'

	'gaussian'

	'quadratic'

	'cubic'

	'catrom'

	'mitchell'

	'jinc'

	'sinc'

	'sincfast'

	'kaiser'

	'welsh'

	'parzen'

	'bohman'

	'bartlett'

	'lagrange'

	'lanczos'

	'lanczossharp'

	'lanczos2'

	'lanczos2sharp'

	'robidoux'

	'robidouxsharp'

	'cosine'

	'spline'

	'sentinel'

See also

	ImageMagick Resize Filters [http://www.imagemagick.org/Usage/resize/]

	Demonstrates the results of resampling images using the various
resize filters and blur settings available in ImageMagick.

	
wand.image.GRAVITY_TYPES = ('forget', 'north_west', 'north', 'north_east', 'west', 'center', 'east', 'south_west', 'south', 'south_east', 'static')

	(tuple) The list of gravity types.

New in version 0.3.0.

	
wand.image.IMAGE_TYPES = ('undefined', 'bilevel', 'grayscale', 'grayscalematte', 'palette', 'palettematte', 'truecolor', 'truecolormatte', 'colorseparation', 'colorseparationmatte', 'optimize', 'palettebilevelmatte')

	(tuple) The list of image types

	'undefined'

	'bilevel'

	'grayscale'

	'grayscalematte'

	'palette'

	'palettematte'

	'truecolor'

	'truecolormatte'

	'colorseparation'

	'colorseparationmatte'

	'optimize'

	'palettebilevelmatte'

See also

	ImageMagick Image Types [http://www.imagemagick.org/api/magick-image.php#MagickSetImageType]

	Describes the MagickSetImageType method which can be used
to set the type of an image

	
wand.image.ORIENTATION_TYPES = ('undefined', 'top_left', 'top_right', 'bottom_right', 'bottom_left', 'left_top', 'right_top', 'right_bottom', 'left_bottom')

	(tuple) The list of orientation types.

New in version 0.3.0.

	
wand.image.UNIT_TYPES = ('undefined', 'pixelsperinch', 'pixelspercentimeter')

	(tuple) The list of resolution unit types.

	'undefined'

	'pixelsperinch'

	'pixelspercentimeter'

See also

	ImageMagick Image Units [http://www.imagemagick.org/api/magick-image.php#MagickSetImageUnits]

	Describes the MagickSetImageUnits method which can be used
to set image units of resolution

	
class wand.image.BaseImage(wand)

	The abstract base of Image (container) and
SingleImage. That means the most of
operations, defined in this abstract classs, are possible for
both Image and SingleImage.

New in version 0.3.0.

	
alpha_channel

	(bool [http://docs.python.org/library/functions.html#bool]) Get state of image alpha channel.
It can also be used to enable/disable alpha channel.

New in version 0.2.1.

	
animation

	(bool [http://docs.python.org/library/functions.html#bool]) Whether the image is animation or not.
It doesn’t only mean that the image has two or more images (frames),
but all frames are even the same size. It’s about image format,
not content. It’s False even if image/ico
consits of two or more images of the same size.

For example, it’s False for image/jpeg,
image/gif, image/ico.

If image/gif has two or more frames, it’s True.
If image/gif has only one frame, it’s False.

New in version 0.3.0.

Changed in version 0.3.8: Became to accept image/x-gif as well.

	
background_color

	(wand.color.Color) The image background color.
It can also be set to change the background color.

New in version 0.1.9.

	
caption(*args, **kwargs)

	Writes a caption text into the position.

	Parameters:	
	text (basestring) – text to write

	left (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – x offset in pixels

	top (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – y offset in pixels

	width (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – width of caption in pixels.
default is width of the image

	height (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – height of caption in pixels.
default is height of the image

	font (wand.font.Font) – font to use. default is font of the image

	gravity (basestring) – text placement gravity.
uses the current gravity setting of the image
by default

New in version 0.3.0.

	
clone()

	Clones the image. It is equivalent to call Image with
image parameter.

with img.clone() as cloned:
 # manipulate the cloned image
 pass

	Returns:	the cloned new image

	Return type:	Image

New in version 0.1.1.

	
colorspace

	(basestring) The image colorspace.

Defines image colorspace as in COLORSPACE_TYPES enumeration.

It may raise ValueError when the colorspace is unknown.

New in version 0.3.4.

	
composite(*args, **kwargs)

	Places the supplied image over the current image, with the top
left corner of image at coordinates left, top of the
current image. The dimensions of the current image are not changed.

	Parameters:	
	image (wand.image.Image) – the image placed over the current image

	left (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the x-coordinate where image will be placed

	top (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the y-coordinate where image will be placed

New in version 0.2.0.

	
composite_channel(*args, **kwargs)

	Composite two images using the particular channel.

	Parameters:	
	channel – the channel type. available values can be found
in the CHANNELS mapping

	image (Image) – the composited source image.
(the receiver image becomes the destination)

	operator – the operator that affects how the composite
is applied to the image. available values
can be found in the COMPOSITE_OPERATORS
list

	left (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the column offset of the composited source image

	top (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the row offset of the composited source image

	Raises exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError]:

		when the given channel or
operator is invalid

New in version 0.3.0.

	
compression_quality

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) Compression quality of this image.

New in version 0.2.0.

	
crop(*args, **kwargs)

	Crops the image in-place.

+--+
| ^ ^ |
top		
v		
<-- left --> +-------------------+ bottom		
	^	
	<-- width --	--->
	height	
	v	
+-------------------+ v		
<--------------- right ---------->		
+--+

	Parameters:	
	left (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – x-offset of the cropped image. default is 0

	top (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – y-offset of the cropped image. default is 0

	right (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – second x-offset of the cropped image.
default is the width of the image.
this parameter and width parameter are exclusive
each other

	bottom (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – second y-offset of the cropped image.
default is the height of the image.
this parameter and height parameter are exclusive
each other

	width (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the width of the cropped image.
default is the width of the image.
this parameter and right parameter are exclusive
each other

	height (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the height of the cropped image.
default is the height of the image.
this parameter and bottom parameter are exclusive
each other

	reset_coords (bool [http://docs.python.org/library/functions.html#bool]) – optional flag. If set, after the rotation, the coordinate frame
will be relocated to the upper-left corner of the new image.
By default is True.

	Raises exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError]:

		when one or more arguments are invalid

Note

If you want to crop the image but not in-place, use slicing
operator.

Changed in version 0.1.8: Made to raise ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError] instead of
IndexError [http://docs.python.org/library/exceptions.html#exceptions.IndexError] for invalid width/height
arguments.

New in version 0.1.7.

	
depth

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) The depth of this image.

New in version 0.2.1.

	
dirty = None

	(bool [http://docs.python.org/library/functions.html#bool]) Whether the image is changed or not.

	
equalize(*args, **kwargs)

	Equalizes the image histogram

New in version 0.3.10.

	
flip(*args, **kwargs)

	Creates a vertical mirror image by reflecting the pixels around
the central x-axis. It manipulates the image in place.

New in version 0.3.0.

	
flop(*args, **kwargs)

	Creates a horizontal mirror image by reflecting the pixels around
the central y-axis. It manipulates the image in place.

New in version 0.3.0.

	
font

	(wand.font.Font) The current font options.

	
font_path

	(basestring) The path of the current font.
It also can be set.

	
font_size

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) The font size. It also can be set.

	
gaussian_blur(*args, **kwargs)

	Blurs the image. We convolve the image with a gaussian operator
of the given radius and standard deviation (sigma).
For reasonable results, the radius should be larger
than sigma. Use a radius of 0 and blur() selects
a suitable radius for you.

	Parameters:	
	radius (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the radius of the, in pixels,
not counting the center pixel

	sigma (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the standard deviation of the, in pixels

New in version 0.3.3.

	
gravity

	(basestring) The text placement gravity used when
annotating with text. It’s a string from GRAVITY_TYPES
list. It also can be set.

	
height

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) The height of this image.

	
histogram

	(HistogramDict) The mapping that represents the histogram.
Keys are Color objects, and values are
the number of pixels.

New in version 0.3.0.

	
liquid_rescale(*args, **kwargs)

	Rescales the image with seam carving [http://en.wikipedia.org/wiki/Seam_carving], also known as
image retargeting, content-aware resizing, or liquid rescaling.

	Parameters:	
	width (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the width in the scaled image

	height (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the height in the scaled image

	delta_x (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – maximum seam transversal step.
0 means straight seams. default is 0

	rigidity (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – introduce a bias for non-straight seams.
default is 0

	Raises wand.exceptions.MissingDelegateError:

		when ImageMagick isn’t configured --with-lqr option.

Note

This feature requires ImageMagick to be configured
--with-lqr option. Or it will raise
MissingDelegateError:

See also

	Seam carving [http://en.wikipedia.org/wiki/Seam_carving] — Wikipedia

	The article which explains what seam carving is
on Wikipedia.

	
modulate(*args, **kwargs)

	Changes the brightness, saturation and hue of an image.
We modulate the image with the given brightness, saturation
and hue.

	Parameters:	
	brightness (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – percentage of brightness

	saturation (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – percentage of saturation

	hue (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – percentage of hue rotation

	Raises exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError]:

		when one or more arguments are invalid

New in version 0.3.4.

	
negate(grayscale=False, channel=None)

	Negate the colors in the reference image.

	Parameters:	
	grayscale (bool [http://docs.python.org/library/functions.html#bool]) – if set, only negate grayscale pixels in the image.

	channel (basestring) – the channel type. available values can be found
in the CHANNELS mapping. If None,
negate all channels.

New in version 0.3.8.

	
options = None

	(OptionDict) The mapping of internal option settings.

New in version 0.3.0.

Changed in version 0.3.4: Added 'jpeg:sampling-factor' option.

Changed in version 0.3.9: Added 'pdf:use-cropbox' option.

	
orientation

	(basestring) The image orientation. It’s a string from
ORIENTATION_TYPES list. It also can be set.

New in version 0.3.0.

	
quantum_range

	(int [http://docs.python.org/library/functions.html#int]) The maxumim value of a color channel that is
supported by the imagemagick library.

New in version 0.2.0.

	
reset_coords()

	Reset the coordinate frame of the image so to the upper-left corner
is (0, 0) again (crop and rotate operations change it).

New in version 0.2.0.

	
resize(*args, **kwargs)

	Resizes the image.

	Parameters:	
	width (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the width in the scaled image. default is the original
width

	height (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the height in the scaled image. default is the original
height

	filter (basestring, numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – a filter type to use for resizing. choose one in
FILTER_TYPES. default is 'undefined'
which means IM will try to guess best one to use

	blur (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the blur factor where > 1 is blurry, < 1 is sharp.
default is 1

Changed in version 0.2.1: The default value of filter has changed from 'triangle'
to 'undefined' instead.

Changed in version 0.1.8: The blur parameter changed to take numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]
instead of numbers.Rational [http://docs.python.org/library/numbers.html#numbers.Rational].

New in version 0.1.1.

	
resolution

	(tuple) Resolution of this image.

New in version 0.3.0.

	
rotate(*args, **kwargs)

	Rotates the image right. It takes a background color
for degree that isn’t a multiple of 90.

	Parameters:	
	degree (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – a degree to rotate. multiples of 360 affect nothing

	background (wand.color.Color) – an optional background color.
default is transparent

	reset_coords (bool [http://docs.python.org/library/functions.html#bool]) – optional flag. If set, after the rotation, the
coordinate frame will be relocated to the upper-left corner of
the new image. By default is True.

New in version 0.2.0: The reset_coords parameter.

New in version 0.1.8.

	
sample(*args, **kwargs)

	Resizes the image by sampling the pixels. It’s basically quicker
than resize() except less quality as a tradeoff.

	Parameters:	
	width (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the width in the scaled image. default is the original
width

	height (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the height in the scaled image. default is the original
height

New in version 0.3.4.

	
sequence = None

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of
SingleImages that the image contains.

New in version 0.3.0.

	
signature

	(str [http://docs.python.org/library/functions.html#str]) The SHA-256 message digest for the image pixel
stream.

New in version 0.1.9.

	
size

	(tuple) The pair of (width, height).

	
threshold(*args, **kwargs)

	Changes the value of individual pixels based on the intensity
of each pixel compared to threshold. The result is a high-contrast,
two color image. It manipulates the image in place.

	Parameters:	
	threshold (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – threshold as a factor of quantum

	channel (basestring) – the channel type. available values can be found
in the CHANNELS mapping. If None,
threshold all channels.

New in version 0.3.10.

	
transform(*args, **kwargs)

	Transforms the image using MagickTransformImage(),
which is a convenience function accepting geometry strings to
perform cropping and resizing. Cropping is performed first,
followed by resizing. Either or both arguments may be omitted
or given an empty string, in which case the corresponding action
will not be performed. Geometry specification strings are
defined as follows:

A geometry string consists of a size followed by an optional offset.
The size is specified by one of the options below,
where bold terms are replaced with appropriate integer values:

	scale%

	Height and width both scaled by specified percentage

	scale-x%xscale-y%

	Height and width individually scaled by specified percentages.
Only one % symbol is needed.

	width

	Width given, height automagically selected to preserve aspect ratio.

	xheight

	Height given, width automagically selected to preserve aspect ratio.

	widthxheight

	Maximum values of width and height given; aspect ratio preserved.

	widthxheight!

	Width and height emphatically given; original aspect ratio ignored.

	widthxheight>

	Shrinks images with dimension(s) larger than the corresponding
width and/or height dimension(s).

	widthxheight<

	Enlarges images with dimensions smaller than the corresponding
width and/or height dimension(s).

	area@

	Resize image to have the specified area in pixels.
Aspect ratio is preserved.

The offset, which only applies to the cropping geometry string,
is given by {+-}x{+-}y, that is,
one plus or minus sign followed by an x offset,
followed by another plus or minus sign, followed by a y offset.
Offsets are in pixels from the upper left corner of the image.
Negative offsets will cause the corresponding number of pixels to
be removed from the right or bottom edge of the image, meaning the
cropped size will be the computed size minus the absolute value
of the offset.

For example, if you want to crop your image to 300x300 pixels
and then scale it by 2x for a final size of 600x600 pixels,
you can call:

image.transform('300x300', '200%')

This method is a fairly thing wrapper for the C API, and does not
perform any additional checking of the parameters except insofar as
verifying that they are of the correct type. Thus, like the C
API function, the method is very permissive in terms of what
it accepts for geometry strings; unrecognized strings and
trailing characters will be ignored rather than raising an error.

	Parameters:	
	crop (basestring) – A geometry string defining a subregion of the image
to crop to

	resize (basestring) – A geometry string defining the final size of the image

See also

	ImageMagick Geometry Specifications [http://www.imagemagick.org/script/command-line-processing.php#geometry]

	Cropping and resizing geometry for the transform method are
specified according to ImageMagick’s geometry string format.
The ImageMagick documentation provides more information about
geometry strings.

New in version 0.2.2.

	
transparent_color(*args, **kwargs)

	Makes the color color a transparent color with a tolerance of
fuzz. The alpha parameter specify the transparency level and the
parameter fuzz specify the tolerance.

	Parameters:	
	color (wand.color.Color) – The color that should be made transparent on the image,
color object

	alpha (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the level of transparency: 1.0 is fully opaque
and 0.0 is fully transparent.

	fuzz (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – By default target must match a particular pixel color
exactly. However, in many cases two colors may differ
by a small amount. The fuzz member of image defines how
much tolerance is acceptable to consider two colors as the
same. For example, set fuzz to 10 and the color red at
intensities of 100 and 102 respectively are now
interpreted as the same color for the color.

	invert (bool [http://docs.python.org/library/functions.html#bool]) – Boolean to tell to paint the inverse selection.

New in version 0.3.0.

	
transparentize(*args, **kwargs)

	Makes the image transparent by subtracting some percentage of
the black color channel. The transparency parameter specifies the
percentage.

	Parameters:	transparency (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the percentage fade that should be performed on
the image, from 0.0 to 1.0

New in version 0.2.0.

	
type

	(basestring) The image type.

Defines image type as in IMAGE_TYPES enumeration.

It may raise ValueError when the type is unknown.

New in version 0.2.2.

	
units

	(basestring) The resolution units of this image.

	
unsharp_mask(*args, **kwargs)

	Sharpens the image using unsharp mask filter. We convolve the image
with a Gaussian operator of the given radius and standard deviation
(sigma). For reasonable results, radius should be larger than
sigma. Use a radius of 0 and unsharp_mask()`() selects
a suitable radius for you.

	Parameters:	
	radius (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the radius of the Gaussian, in pixels,
not counting the center pixel

	sigma (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the standard deviation of the Gaussian, in pixels

	amount (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the percentage of the difference between the original
and the blur image that is added back into the original

	threshold (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the threshold in pixels needed to apply
the diffence amount

New in version 0.3.4.

	
wand

	Internal pointer to the MagickWand instance. It may raise
ClosedImageError when the instance has destroyed already.

	
watermark(*args, **kwargs)

	Transparentized the supplied image and places it over the
current image, with the top left corner of image at coordinates
left, top of the current image. The dimensions of the
current image are not changed.

	Parameters:	
	image (wand.image.Image) – the image placed over the current image

	transparency (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the percentage fade that should be performed on
the image, from 0.0 to 1.0

	left (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the x-coordinate where image will be placed

	top (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the y-coordinate where image will be placed

New in version 0.2.0.

	
width

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) The width of this image.

	
class wand.image.ChannelDepthDict(image)

	The mapping table of channels to their depth.

	Parameters:	image (Image) – an image instance

Note

You don’t have to use this by yourself.
Use Image.channel_depths property instead.

New in version 0.3.0.

	
class wand.image.ChannelImageDict(image)

	The mapping table of separated images of the particular channel
from the image.

	Parameters:	image (Image) – an image instance

Note

You don’t have to use this by yourself.
Use Image.channel_images property instead.

New in version 0.3.0.

	
exception wand.image.ClosedImageError

	An error that rises when some code tries access to an already closed
image.

	
class wand.image.HistogramDict(image)

	Specialized mapping object to represent color histogram.
Keys are colors, and values are the number of pixels.

	Parameters:	image (BaseImage) – the image to get its histogram

New in version 0.3.0.

	
class wand.image.Image(image=None, blob=None, file=None, filename=None, format=None, width=None, height=None, background=None, resolution=None)

	An image object.

	Parameters:	
	image (Image) – makes an exact copy of the image

	blob (str [http://docs.python.org/library/functions.html#str]) – opens an image of the blob byte array

	file (file object) – opens an image of the file object

	filename (basestring) – opens an image of the filename string

	format (basestring) – forces filename to buffer.``format`` to help
imagemagick detect the file format. Used only in
blob or file cases

	width (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the width of new blank image.

	height (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the height of new blank imgage.

	background (wand.color.Color) – an optional background color.
default is transparent

	resolution (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence],
numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – set a resolution value (dpi),
useful for vectorial formats (like pdf)

New in version 0.1.5: The file parameter.

New in version 0.1.1: The blob parameter.

New in version 0.2.1: The format parameter.

New in version 0.2.2: The width, height, background parameters.

New in version 0.3.0: The resolution parameter.

	
[left:right, top:bottom]

	Crops the image by its left, right, top and bottom,
and then returns the cropped one.

with img[100:200, 150:300] as cropped:
 # manipulated the cropped image
 pass

Like other subscriptable objects, default is 0 or its width/height:

img[:, :] #--> just clone
img[:100, 200:] #--> equivalent to img[0:100, 200:img.height]

Negative integers count from the end (width/height):

img[-70:-50, -20:-10]
#--> equivalent to img[width-70:width-50, height-20:height-10]

	Returns:	the cropped image

	Rtype:	Image

New in version 0.1.2.

	
blank(width, height, background=None)

	Creates blank image.

	Parameters:	
	width (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the width of new blank image.

	height (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the height of new blank imgage.

	background (wand.color.Color) – an optional background color.
default is transparent

	Returns:	blank image

	Return type:	Image

New in version 0.3.0.

	
border(color, width, height)

	Surrounds the image with a border.

	Parameters:	
	bordercolor – the border color pixel wand

	width (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the border width

	height (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the border height

New in version 0.3.0.

	
channel_depths = None

	(ChannelDepthDict) The mapping of channels to their depth.
Read only.

New in version 0.3.0.

	
channel_images = None

	(ChannelImageDict) The mapping of separated channels
from the image.

with image.channel_images['red'] as red_image:
 display(red_image)

	
clear()

	Clears resources associated with the image, leaving the image blank,
and ready to be used with new image.

New in version 0.3.0.

	
close()

	Closes the image explicitly. If you use the image object in
with [http://docs.python.org/reference/compound_stmts.html#with] statement, it was called implicitly so don’t have to
call it.

Note

It has the same functionality of destroy() method.

	
compression

	(basestring) The type of image compression.
It’s a string from COMPRESSION_TYPES list.
It also can be set.

New in version 0.3.6.

	
convert(format)

	Converts the image format with the original image maintained.
It returns a converted image instance which is new.

with img.convert('png') as converted:
 converted.save(filename='converted.png')

	Parameters:	format (basestring) – image format to convert to

	Returns:	a converted image

	Return type:	Image

	Raises:	ValueError when the given format is unsupported

New in version 0.1.6.

	
format

	(basestring) The image format.

If you want to convert the image format, just reset this property:

assert isinstance(img, wand.image.Image)
img.format = 'png'

It may raise ValueError when the format is unsupported.

See also

	ImageMagick Image Formats [http://www.imagemagick.org/script/formats.php]

	ImageMagick uses an ASCII string known as magick (e.g. GIF)
to identify file formats, algorithms acting as formats,
built-in patterns, and embedded profile types.

New in version 0.1.6.

	
make_blob(format=None)

	Makes the binary string of the image.

	Parameters:	format (basestring) – the image format to write e.g. 'png', 'jpeg'.
it is omittable

	Returns:	a blob (bytes) string

	Return type:	str [http://docs.python.org/library/functions.html#str]

	Raises:	ValueError when format is invalid

Changed in version 0.1.6: Removed a side effect that changes the image format
silently.

New in version 0.1.5: The format parameter became optional.

New in version 0.1.1.

	
metadata = None

	(Metadata) The metadata mapping of the image. Read only.

New in version 0.3.0.

	
mimetype

	(basestring) The MIME type of the image
e.g. 'image/jpeg', 'image/png'.

New in version 0.1.7.

	
normalize(channel=None)

	Normalize color channels.

	Parameters:	channel (basestring) – the channel type. available values can be found
in the CHANNELS mapping. If None,
normalize all channels.

	
read(file=None, filename=None, blob=None, resolution=None)

	Read new image into Image() object.

	Parameters:	
	blob (str [http://docs.python.org/library/functions.html#str]) – reads an image from the blob byte array

	file (file object) – reads an image from the file object

	filename (basestring) – reads an image from the filename string

	resolution (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence],
numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – set a resolution value (DPI),
useful for vectorial formats (like PDF)

New in version 0.3.0.

	
save(file=None, filename=None)

	Saves the image into the file or filename. It takes
only one argument at a time.

	Parameters:	
	file (file object) – a file object to write to

	filename (basestring) – a filename string to write to

New in version 0.1.5: The file parameter.

New in version 0.1.1.

	
strip()

	Strips an image of all profiles and comments.

New in version 0.2.0.

	
trim(color=None, fuzz=0)

	Remove solid border from image. Uses top left pixel as a guide
by default, or you can also specify the color to remove.

	Parameters:	
	color (Color) – the border color to remove.
if it’s omitted top left pixel is used by default

	fuzz (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – Defines how much tolerance is acceptable to consider
two colors as the same.

New in version 0.3.0: Optional color and fuzz parameters.

New in version 0.2.1.

	
class wand.image.ImageProperty(image)

	The mixin class to maintain a weak reference to the parent
Image object.

New in version 0.3.0.

	
image

	(Image) The parent image.

It ensures that the parent Image, which is held in a weak
reference, still exists. Returns the dereferenced Image
if it does exist, or raises a ClosedImageError otherwise.

	Exc:	ClosedImageError when the parent Image has been destroyed

	
class wand.image.Iterator(image=None, iterator=None)

	Row iterator for Image. It shouldn’t be instantiated
directly; instead, it can be acquired through Image instance:

assert isinstance(image, wand.image.Image)
iterator = iter(image)

It doesn’t iterate every pixel, but rows. For example:

for row in image:
 for col in row:
 assert isinstance(col, wand.color.Color)
 print(col)

Every row is a collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence] which consists of
one or more wand.color.Color values.

	Parameters:	image (Image) – the image to get an iterator

New in version 0.1.3.

	
clone()

	Clones the same iterator.

	
class wand.image.Metadata(image)

	Class that implements dict-like read-only access to image metadata
like EXIF or IPTC headers.

	Parameters:	image (Image) – an image instance

Note

You don’t have to use this by yourself.
Use Image.metadata property instead.

New in version 0.3.0.

	
class wand.image.OptionDict(image)

	Mutable mapping of the image internal options. See available
options in OPTIONS constant.

New in version 0.3.0.

	
wand.image.manipulative(function)

	Mark the operation manipulating itself instead of returning new one.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.color — Colors

New in version 0.1.2.

	
class wand.color.Color(string=None, raw=None)

	Color value.

Unlike any other objects in Wand, its resource management can be
implicit when it used outside of with [http://docs.python.org/reference/compound_stmts.html#with] block. In these case,
its resource are allocated for every operation which requires a resource
and destroyed immediately. Of course it is inefficient when the
operations are much, so to avoid it, you should use color objects
inside of with [http://docs.python.org/reference/compound_stmts.html#with] block explicitly e.g.:

red_count = 0
with Color('#f00') as red:
 with Image(filename='image.png') as img:
 for row in img:
 for col in row:
 if col == red:
 red_count += 1

	Parameters:	string (basestring) – a color namel string e.g. 'rgb(255, 255, 255)',
'#fff', 'white'. see ImageMagick Color Names [http://www.imagemagick.org/script/color.php]
doc also

Changed in version 0.3.0: Color objects become hashable.

See also

	ImageMagick Color Names [http://www.imagemagick.org/script/color.php]

	The color can then be given as a color name (there is a limited
but large set of these; see below) or it can be given as a set
of numbers (in decimal or hexadecimal), each corresponding to
a channel in an RGB or RGBA color model. HSL, HSLA, HSB, HSBA,
CMYK, or CMYKA color models may also be specified. These topics
are briefly described in the sections below.

	
== (other)

	Equality operator.

	Param other:	a color another one

	Type color:	Color

	Returns:	True only if two images equal.

	Rtype:	bool [http://docs.python.org/library/functions.html#bool]

	
alpha

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) Alpha value, from 0.0 to 1.0.

	
alpha_int8

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) Alpha value as 8bit integer which is
a common style. From 0 to 255.

New in version 0.3.0.

	
alpha_quantum

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) Alpha value.
Scale depends on QUANTUM_DEPTH.

New in version 0.3.0.

	
blue

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) Blue, from 0.0 to 1.0.

	
blue_int8

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) Blue as 8bit integer which is
a common style. From 0 to 255.

New in version 0.3.0.

	
blue_quantum

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) Blue.
Scale depends on QUANTUM_DEPTH.

New in version 0.3.0.

	
static c_equals(a, b)

	Raw level version of equality test function for two pixels.

	Parameters:	
	a (ctypes.c_void_p [http://docs.python.org/library/ctypes.html#ctypes.c_void_p]) – a pointer to PixelWand to compare

	b (ctypes.c_void_p [http://docs.python.org/library/ctypes.html#ctypes.c_void_p]) – a pointer to PixelWand to compare

	Returns:	True only if two pixels equal

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

Note

It’s only for internal use. Don’t use it directly.
Use == operator of Color instead.

	
green

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) Green, from 0.0 to 1.0.

	
green_int8

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) Green as 8bit integer which is
a common style. From 0 to 255.

New in version 0.3.0.

	
green_quantum

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) Green.
Scale depends on QUANTUM_DEPTH.

New in version 0.3.0.

	
normalized_string

	(basestring) The normalized string representation of
the color. The same color is always represented to the same
string.

New in version 0.3.0.

	
red

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) Red, from 0.0 to 1.0.

	
red_int8

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) Red as 8bit integer which is a common
style. From 0 to 255.

New in version 0.3.0.

	
red_quantum

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) Red.
Scale depends on QUANTUM_DEPTH.

New in version 0.3.0.

	
string

	(basestring) The string representation of the color.

	
wand.color.scale_quantum_to_int8(quantum)

	Straightforward port of ScaleQuantumToChar() inline
function.

	Parameters:	quantum (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – quantum value

	Returns:	8bit integer of the given quantum value

	Return type:	numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]

New in version 0.3.0.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.font — Fonts

New in version 0.3.0.

Font is an object which takes the path of font file,
size, color, and whether to use
antialiasing. If you want to use font by its name rather
than the file path, use TTFQuery [http://ttfquery.sourceforge.net/] package. The font path resolution by its
name is a very complicated problem to achieve.

See also

	TTFQuery [http://ttfquery.sourceforge.net/] — Find and Extract Information from TTF Files

	TTFQuery builds on the FontTools-TTX [http://sourceforge.net/projects/fonttools/] package to allow the Python
programmer to accomplish a number of tasks:

	query the system to find installed fonts

	retrieve metadata about any TTF font file
	this includes the glyph outlines (shape) of individual code-points,
which allows for rendering the glyphs in 3D (such as is done in
OpenGLContext)

	lookup/find fonts by:
	abstract family type

	proper font name

	build simple metadata registries for run-time font matching

	
class wand.font.Font

	Font struct which is a subtype of tuple.

	Parameters:	
	path (str [http://docs.python.org/library/functions.html#str], basestring) – the path of the font file

	size (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the size of typeface. 0 by default which means autosized

	color (Color) – the color of typeface. black by default

	antialias (bool [http://docs.python.org/library/functions.html#bool]) – whether to use antialiasing. True by default

Changed in version 0.3.9: The size parameter becomes optional. Its default value is
0, which means autosized.

	
antialias

	(bool [http://docs.python.org/library/functions.html#bool]) Whether to apply antialiasing (True)
or not (False).

	
color

	(wand.color.Color) The font color.

	
path

	(basestring) The path of font file.

	
size

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) The font size in pixels.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.drawing — Drawings

The module provides some vector drawing functions.

New in version 0.3.0.

	
wand.drawing.CLIP_PATH_UNITS = ('undefined_path_units', 'user_space', 'user_space_on_use', 'object_bounding_box')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of clip path units

	'undefined_path_units'

	'user_space'

	'user_space_on_use'

	'object_bounding_box'

	
wand.drawing.FILL_RULE_TYPES = ('undefined', 'evenodd', 'nonzero')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of fill-rule types.

	'undefined'

	'evenodd'

	'nonzero'

	
wand.drawing.FONT_METRICS_ATTRIBUTES = ('character_width', 'character_height', 'ascender', 'descender', 'text_width', 'text_height', 'maximum_horizontal_advance', 'x1', 'y1', 'x2', 'y2', 'x', 'y')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The attribute names of font metrics.

	
wand.drawing.GRAVITY_TYPES = ('forget', 'north_west', 'north', 'north_east', 'west', 'center', 'east', 'south_west', 'south', 'south_east', 'static')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of text gravity types.

	'forget'

	'north_west'

	'north'

	'north_east'

	'west'

	'center'

	'east'

	'south_west'

	'south'

	'south_east'

	'static'

	
wand.drawing.LINE_CAP_TYPES = ('undefined', 'butt', 'round', 'square')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of LineCap types

	'undefined;

	'butt'

	'round'

	'square'

	
wand.drawing.LINE_JOIN_TYPES = ('undefined', 'miter', 'round', 'bevel')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of LineJoin types

	'undefined'

	'miter'

	'round'

	'bevel'

	
wand.drawing.PAINT_METHOD_TYPES = ('undefined', 'point', 'replace', 'floodfill', 'filltoborder', 'reset')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of paint method types.

	'undefined'

	'point'

	'replace'

	'floodfill'

	'filltoborder'

	'reset'

	
wand.drawing.STRETCH_TYPES = ('undefined', 'normal', 'ultra_condensed', 'extra_condensed', 'condensed', 'semi_condensed', 'semi_expanded', 'expanded', 'extra_expanded', 'ultra_expanded', 'any')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of stretch types for fonts

	'undefined;

	'normal'

	'ultra_condensed'

	'extra_condensed'

	'condensed'

	'semi_condensed'

	'semi_expanded'

	'expanded'

	'extra_expanded'

	'ultra_expanded'

	'any'

	
wand.drawing.STYLE_TYPES = ('undefined', 'normal', 'italic', 'oblique', 'any')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of style types for fonts

	'undefined;

	'normal'

	'italic'

	'oblique'

	'any'

	
wand.drawing.TEXT_ALIGN_TYPES = ('undefined', 'left', 'center', 'right')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of text align types.

	'undefined'

	'left'

	'center'

	'right'

	
wand.drawing.TEXT_DECORATION_TYPES = ('undefined', 'no', 'underline', 'overline', 'line_through')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of text decoration types.

	'undefined'

	'no'

	'underline'

	'overline'

	'line_through'

	
wand.drawing.TEXT_DIRECTION_TYPES = ('undefined', 'right_to_left', 'left_to_right')

	(collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The list of text direction types.

	'undefined'

	'right_to_left'

	'left_to_right'

	
class wand.drawing.Drawing(drawing=None)

	Drawing object. It maintains several vector drawing instructions
and can get drawn into zero or more Image objects
by calling it.

For example, the following code draws a diagonal line to the image:

with Drawing() as draw:
 draw.line((0, 0), image.size)
 draw(image)

	Parameters:	drawing (Drawing) – an optional drawing object to clone.
use clone() method rather than this parameter

New in version 0.3.0.

	
affine(matrix)

	Adjusts the current affine transformation matrix with the specified
affine transformation matrix. Note that the current affine transform is
adjusted rather than replaced.

 | sx rx 0 |
| x', y', 1 | = | x, y, 1 | * | ry sy 0 |
 | tx ty 1 |

	Parameters:	matrix (Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – a list of Real [http://docs.python.org/library/numbers.html#numbers.Real] to define affine matrix.
[sx, rx, ry, sy, tx, ty]

New in version 0.4.0.

	
arc(start, end, degree)

	Draws a arc using the current stroke_color,
stroke_width, and fill_color.

	Parameters:	
	start (Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents starting x and y of the arc

	end (Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents ending x and y of the arc

	degree (Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents starting degree, and ending degree

New in version 0.4.0.

	
bezier(points=None)

	Draws a bezier curve through a set of points on the image, using
the specified array of coordinates.

At least four points should be given to complete a bezier path.
The first & forth point being the start & end point, and the second
& third point controlling the direction & curve.

Example bezier on image

with Drawing() as draw:
 points = [(40,10), # Start point
 (20,50), # First control
 (90,10), # Second control
 (70,40)] # End point
 draw.stroke_color = Color('#000')
 draw.fill_color = Color('#fff')
 draw.bezier(points)
 draw.draw(image)

	Parameters:	points (list [http://docs.python.org/library/functions.html#list]) – list of x,y tuples

New in version 0.4.0.

	
border_color

	(Color) the current border color. It also can
be set. This attribute controls the behavior of
color() during 'filltoborder'
operation.

New in version 0.4.0.

	
circle(origin, perimeter)

	Draws a circle from origin to perimeter

	Parameters:	
	origin (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents origin x and y of circle

	perimeter (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents perimeter x and y of circle

New in version 0.4.0.

	
clip_rule

	(basestring) The current clip rule. It also can be set.
It’s a string value from FILL_RULE_TYPES list.

New in version 0.4.0.

	
clip_units

	(basestring) The current clip units. It also can be set.
It’s a string value from CLIP_PATH_UNITS list.

New in version 0.4.0.

	
clone()

	Copies a drawing object.

	Returns:	a duplication

	Return type:	Drawing

	
color(x=None, y=None, paint_method='undefined')

	Draws a color on the image using current fill color, starting
at specified position & method.

Available methods in wand.drawing.PAINT_METHOD_TYPES:

	'undefined'

	'point'

	'replace'

	'floodfill'

	'filltoborder'

	'reset'

New in version 0.4.0.

	
comment(message=None)

	Adds a comment to the vector stream.

	Parameters:	message (basestring) – the comment to set.

New in version 0.4.0.

	
composite(operator, left, top, width, height, image)

	Composites an image onto the current image, using the specified
composition operator, specified position, and at the specified size.

	Parameters:	
	operator – the operator that affects how the composite
is applied to the image. available values
can be found in the COMPOSITE_OPERATORS
list

	type – COMPOSITE_OPERATORS

	left (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the column offset of the composited drawing source

	top (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the row offset of the composited drawing source

	width (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the total columns to include in the composited source

	height (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the total rows to include in the composited source

New in version 0.4.0.

	
draw(image)

	Renders the current drawing into the image. You can simply
call Drawing instance rather than calling this method.
That means the following code which calls Drawing object
itself:

drawing(image)

is equivalent to the following code which calls draw() method:

drawing.draw(image)

	Parameters:	image (Image) – the image to be drawn

	
ellipse(origin, radius, rotation=(0, 360))

	Draws a ellipse at origin with independent x & y radius.
Ellipse can be partial by setting start & end rotation.

	Parameters:	
	origin (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents origin x and y of circle

	radius (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents radius x and radius y of circle

	rotation (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents start and end of ellipse.
Default (0,360)

New in version 0.4.0.

	
fill_color

	(Color) The current color to fill.
It also can be set.

	
fill_opacity

	(Real [http://docs.python.org/library/numbers.html#numbers.Real]) The current fill opacity.
It also can be set.

New in version 0.4.0.

	
fill_rule

	(basestring) The current fill rule. It can also be set.
It’s a string value from FILL_RULE_TYPES list.

New in version 0.4.0.

	
font_resolution

	(Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) The current font resolution. It also
can be set.

New in version 0.4.0.

	
font_size

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) The font size. It also can be set.

	
font_stretch

	(basestring) The current font family. It also can be set.

New in version 0.4.0.

	
font_style

	(basestring) The current font style. It also can be set.

New in version 0.4.0.

	
font_weight

	(Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) The current font weight.
It also can be set.

New in version 0.4.0.

	
get_font_metrics(image, text, multiline=False)

	Queries font metrics from the given text.

	Parameters:	
	image (Image) – the image to be drawn

	text (basestring) – the text string for get font metrics.

	multiline (boolean) – text is multiline or not

	
gravity

	(basestring) The text placement gravity used when
annotating with text. It’s a string from GRAVITY_TYPES
list. It also can be set.

	
line(start, end)

	Draws a line start to end.

	Parameters:	
	start (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Integral [http://docs.python.org/library/numbers.html#numbers.Integral], numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral])
pair which represents starting x and y of the line

	end (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Integral [http://docs.python.org/library/numbers.html#numbers.Integral], numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral])
pair which represents ending x and y of the line

	
matte(x=None, y=None, paint_method='undefined')

	Paints on the image’s opacity channel in order to set effected pixels
to transparent.

To influence the opacity of pixels. The available methods are:

	'undefined'

	'point'

	'replace'

	'floodfill'

	'filltoborder'

	'reset'

New in version 0.4.0.

	
opacity

	(Real [http://docs.python.org/library/numbers.html#numbers.Real]) returns the opacity used when drawing with
the fill or stroke color or texture. Fully opaque is 1.0. This method
only affects vector graphics, and is experimental. To set the opacity
of a drawing, use
Drawing.fill_opacity & Drawing.stroke_opacity

New in version 0.4.0.

	
path_close()

	Adds a path element to the current path which closes
the current subpath by drawing a straight line from the current point
to the current subpath’s most recent starting point.

New in version 0.4.0.

	
path_curve(to=None, controls=None, smooth=False, relative=False)

	Draws a cubic Bezier curve from the current point to given to
(x,y) coordinate using controls points at the beginning & end of the
curve. If smooth is set to True, only one controls is expected
and the previous control is used, else two pair of coordinates are
expected to define the control points. The to coordinate then
becomes the new current point.

	Parameters:	
	to (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents coordinates to draw to.

	controls (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
coordinate to used to influence curve

	smooth (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool] assume last defined control coordinate

	relative (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool]
treat given coordinates as relative to current point

New in version 0.4.0.

	
path_curve_to_quadratic_bezier(to=None, control=None, smooth=False, relative=False)

	Draws a quadratic Bezier curve from the current point to given
to coordinate. The control point is assumed to be the reflection of
the control point on the previous command if smooth is True, else a
pair of control coordinates must be given. Each` coordinates can be
relative, or absolute, to the current point by setting the relative
flag. The to coordinate then becomes the new current point, and the
control coordinate will be assumed when called again when smooth
is set to true.

	Parameters:	
	to (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents coordinates to draw to.

	control (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
coordinate to used to influence curve

	smooth (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool] assume last defined control coordinate

	relative (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool]
treat given coordinates as relative to current point

New in version 0.4.0.

	
path_elliptic_arc(to=None, radius=None, rotation=0.0, large_arc=False, clockwise=False, relative=False)

	Draws an elliptical arc from the current point to given to
coordinates. The to coordinates can be relative, or absolute, to the
current point by setting the relative flag. The size and orientation
of the ellipse are defined by two radii (rx, ry) in radius and an
rotation parameters, which indicates how the ellipse as a whole is
rotated relative to the current coordinate system. The center of the
ellipse is calculated automagically to satisfy the constraints imposed
by the other parameters. large_arc and clockwise contribute to
the automatic calculations and help determine how the arc is drawn.
If large_arc is True then draw the larger of the available arcs.
If clockwise is true, then draw the arc matching a clock-wise
rotation.

	Parameters:	
	to (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents coordinates to draw to.

	radius (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents the radii of the ellipse to draw

	rotate (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Real [http://docs.python.org/library/numbers.html#numbers.Real] degree to rotate ellipse on x-axis

	large_arc (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool] draw largest available arc

	clockwise (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool]
draw arc path clockwise from start to target

	relative (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool]
treat given coordinates as relative to current point

New in version 0.4.0.

	
path_finish()

	Terminates the current path.

New in version 0.4.0.

	
path_horizontal_line(x=None, relative=False)

	Draws a horizontal line path from the current point to the target
point. Given x parameter can be relative, or absolute, to the
current point by setting the relative flag. The target point then
becomes the new current point.

	Parameters:	
	x (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Real [http://docs.python.org/library/numbers.html#numbers.Real]
x-axis point to draw to.

	relative (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool]
treat given point as relative to current point

New in version 0.4.0.

	
path_line(to=None, relative=False)

	Draws a line path from the current point to the given to
coordinate. The to coordinates can be relative, or absolute, to the
current point by setting the relative flag. The coordinate then
becomes the new current point.

	Parameters:	
	to (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents coordinates to draw to.

	relative (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool]
treat given coordinates as relative to current point

New in version 0.4.0.

	
path_move(to=None, relative=False)

	Starts a new sub-path at the given coordinates. Given to
parameter can be relative, or absolute, by setting the relative
flag.

	Parameters:	
	to (collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) – (Real [http://docs.python.org/library/numbers.html#numbers.Real], numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real])
pair which represents coordinates to draw to.

	relative (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool]
treat given coordinates as relative to current point

New in version 0.4.0.

	
path_start()

	Declares the start of a path drawing list which is terminated by a
matching path_finish() command. All other path_* commands
must be enclosed between a path_start() and a
path_finish() command. This is because path drawing commands
are subordinate commands and they do not function by themselves.

New in version 0.4.0.

	
path_vertical_line(y=None, relative=False)

	Draws a vertical line path from the current point to the target
point. Given y parameter can be relative, or absolute, to the
current point by setting the relative flag. The target point then
becomes the new current point.

	Parameters:	
	y (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Real [http://docs.python.org/library/numbers.html#numbers.Real]
y-axis point to draw to.

	relative (bool [http://docs.python.org/library/functions.html#bool]) – bool [http://docs.python.org/library/functions.html#bool]
treat given point as relative to current point

New in version 0.4.0.

	
point(x, y)

	Draws a point at given x and y

	Parameters:	
	x (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Real [http://docs.python.org/library/numbers.html#numbers.Real] x of point

	y (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Real [http://docs.python.org/library/numbers.html#numbers.Real] y of point

New in version 0.4.0.

	
polygon(points=None)

	Draws a polygon using the current stoke_color,
stroke_width, and fill_color, using the specified
array of coordinates.

Example polygon on image

with Drawing() as draw:
 points = [(40,10), (20,50), (90,10), (70,40)]
 draw.polygon(points)
 draw.draw(image)

New in version 0.4.0.

	Parameters:	points (list [http://docs.python.org/library/functions.html#list]) – list of x,y tuples

	
polyline(points=None)

	Draws a polyline using the current stoke_color,
stroke_width, and fill_color, using the specified
array of coordinates.

Identical to polygon, but without closed
stroke line.

	Parameters:	points (list [http://docs.python.org/library/functions.html#list]) – list of x,y tuples

New in version 0.4.0.

	
pop()

	Pop destroys the current drawing wand and returns to the previously
pushed drawing wand. Multiple drawing wands may exist. It is an error
to attempt to pop more drawing wands than have been pushed, and it is
proper form to pop all drawing wands which have been pushed.

	Returns:	success of pop operation

	Return type:	bool

New in version 0.4.0.

	
pop_clip_path()

	Terminates a clip path definition.

New in version 0.4.0.

	
pop_defs()

	Terminates a definition list.

New in version 0.4.0.

	
pop_pattern()

	Terminates a pattern definition.

New in version 0.4.0.

	
push()

	Push clones the current drawing wand to create a new drawing wand.
The original drawing wand(s) may be returned to by invoking
Drawing.pop. The drawing wands are stored on a drawing wand
stack. For every Pop there must have already been an equivalent Push.

	Returns:	success of push operation

	Return type:	bool

New in version 0.4.0.

	
push_clip_path(clip_mask_id)

	Starts a clip path definition which is comprised of any number of
drawing commands and terminated by a Drawing.pop_clip_path
command.

	Parameters:	clip_mask_id (basestring) – string identifier to associate with the clip path.

New in version 0.4.0.

	
push_defs()

	Indicates that commands up to a terminating Drawing.pop_defs
command create named elements (e.g. clip-paths, textures, etc.) which
may safely be processed earlier for the sake of efficiency.

New in version 0.4.0.

	
push_pattern(pattern_id, left, top, width, height)

	Indicates that subsequent commands up to a
Drawing.pop_pattern command comprise the definition of a named
pattern. The pattern space is assigned top left corner coordinates, a
width and height, and becomes its own drawing space. Anything which can
be drawn may be used in a pattern definition. Named patterns may be used
as stroke or brush definitions.

	Parameters:	
	pattern_id (basestring) – a unique identifier for the pattern.

	left (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – x ordinate of top left corner.

	top (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – y ordinate of top left corner.

	width (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – width of pattern space.

	height (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – height of pattern space.

	Returns:	success of push operation

	Return type:	bool

New in version 0.4.0.

	
rectangle(left=None, top=None, right=None, bottom=None, width=None, height=None, radius=None, xradius=None, yradius=None)

	Draws a rectangle using the current stoke_color,
stroke_width, and fill_color.

+--+
| ^ ^ |
top		
v		
<-- left --> +-------------------+ bottom		
	^	
	<-- width --	--->
	height	
	v	
+-------------------+ v		
<--------------- right ---------->		
+--+

	Parameters:	
	left (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – x-offset of the rectangle to draw

	top (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – y-offset of the rectangle to draw

	right (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – second x-offset of the rectangle to draw.
this parameter and width parameter are exclusive
each other

	bottom (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – second y-offset of the rectangle to draw.
this parameter and height parameter are exclusive
each other

	width (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the width of the rectangle to draw.
this parameter and right parameter are exclusive
each other

	height (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the height of the rectangle to draw.
this parameter and bottom parameter are exclusive
each other

	radius (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the corner rounding. this is a short-cut for setting
both xradius, and yradius

	xradius (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the xradius corner in horizontal direction.

	yradius (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) – the yradius corner in vertical direction.

New in version 0.3.6.

Changed in version 0.4.0.

Radius keywords added to create rounded rectangle.

	
rotate(degree)

	Applies the specified rotation to the current coordinate space.

	Parameters:	degree (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – degree to rotate

New in version 0.4.0.

	
scale(x=None, y=None)

	Adjusts the scaling factor to apply in the horizontal and vertical
directions to the current coordinate space.

	Parameters:	
	x (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Horizontal scale factor

	y (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Vertical scale factor

New in version 0.4.0.

	
set_fill_pattern_url(url)

	Sets the URL to use as a fill pattern for filling objects. Only local
URLs (“#identifier”) are supported at this time. These local URLs are
normally created by defining a named fill pattern with
Drawing.push_pattern & Drawing.pop_pattern.

	Parameters:	url (basestring) – URL to use to obtain fill pattern.

New in version 0.4.0.

	
set_stroke_pattern_url(url)

	Sets the pattern used for stroking object outlines. Only local
URLs (“#identifier”) are supported at this time. These local URLs are
normally created by defining a named stroke pattern with
Drawing.push_pattern & Drawing.pop_pattern.

	Parameters:	url (basestring) – URL to use to obtain stroke pattern.

New in version 0.4.0.

	
skew(x=None, y=None)

	Skews the current coordinate system in the horizontal direction if
x is given, and vertical direction if y is given.

	Parameters:	
	x (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Skew horizontal direction

	y (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Skew vertical direction

New in version 0.4.0.

	
stroke_antialias

	(bool [http://docs.python.org/library/functions.html#bool]) Controls whether stroked outlines are antialiased.
Stroked outlines are antialiased by default. When antialiasing is
disabled stroked pixels are thresholded to determine if the stroke
color or underlying canvas color should be used.

It also can be set.

New in version 0.4.0.

	
stroke_color

	(Color) The current color of stroke.
It also can be set.

New in version 0.3.3.

	
stroke_dash_array

	(Sequence [http://docs.python.org/library/collections.html#collections.Sequence]) - (numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) An array
representing the pattern of dashes & gaps used to stroke paths.
It also can be set.

New in version 0.4.0.

	
stroke_dash_offset

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) The stroke dash offset. It also can be set.

New in version 0.4.0.

	
stroke_line_cap

	(basestring) The stroke line cap. It also can be set.

New in version 0.4.0.

	
stroke_line_join

	(basestring) The stroke line join. It also can be set.

New in version 0.4.0.

	
stroke_miter_limit

	(Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) The current miter limit.
It also can be set.

New in version 0.4.0.

	
stroke_opacity

	(Real [http://docs.python.org/library/numbers.html#numbers.Real]) The current stroke opacity.
It also can be set.

New in version 0.4.0.

	
stroke_width

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) The stroke width. It also can be set.

New in version 0.3.3.

	
text(x, y, body)

	Writes a text body into (x, y).

	Parameters:	
	x (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the left offset where to start writing a text

	y (numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the baseline where to start writing text

	body (basestring) – the body string to write

	
text_alignment

	(basestring) The current text alignment setting.
It’s a string value from TEXT_ALIGN_TYPES list.
It also can be set.

	
text_antialias

	(bool [http://docs.python.org/library/functions.html#bool]) The boolean value which represents whether
antialiasing is used for text rendering. It also can be set to
True or False to switch the setting.

	
text_decoration

	(basestring) The text decoration setting, a string
from TEXT_DECORATION_TYPES list. It also can be set.

	
text_direction

	(basestring) The text direction setting. a string
from TEXT_DIRECTION_TYPES list. It also can be set.

	
text_interline_spacing

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) The setting of the text line spacing.
It also can be set.

	
text_interword_spacing

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) The setting of the word spacing.
It also can be set.

	
text_kerning

	(numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real]) The setting of the text kerning.
It also can be set.

	
text_under_color

	(Color) The color of a background rectangle
to place under text annotations. It also can be set.

	
translate(x=None, y=None)

	Applies a translation to the current coordinate system which moves
the coordinate system origin to the specified coordinate.

	Parameters:	
	x (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Skew horizontal direction

	y (Real [http://docs.python.org/library/numbers.html#numbers.Real]) – Skew vertical direction

New in version 0.4.0.

	
vector_graphics

	(basestring) The XML text of the Vector Graphics. It also
can be set. The drawing-wand XML is experimental, and subject to change.

Setting this property to None will reset all vector graphic properties
to the default state.

New in version 0.4.0.

	
viewbox(left, top, right, bottom)

	Viewbox sets the overall canvas size to be recorded with the drawing
vector data. Usually this will be specified using the same size as the
canvas image. When the vector data is saved to SVG or MVG formats, the
viewbox is use to specify the size of the canvas image that a viewer
will render the vector data on.

	Parameters:	
	left (Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the left most point of the viewbox.

	top (Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the top most point of the viewbox.

	right (Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the right most point of the viewbox.

	bottom (Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) – the bottom most point of the viewbox.

	
class wand.drawing.FontMetrics

	The tuple subtype which consists of font metrics data.

	
ascender

	Alias for field number 2

	
character_height

	Alias for field number 1

	
character_width

	Alias for field number 0

	
descender

	Alias for field number 3

	
maximum_horizontal_advance

	Alias for field number 6

	
text_height

	Alias for field number 5

	
text_width

	Alias for field number 4

	
x

	Alias for field number 11

	
x1

	Alias for field number 7

	
x2

	Alias for field number 9

	
y

	Alias for field number 12

	
y1

	Alias for field number 8

	
y2

	Alias for field number 10

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.sequence — Sequences

New in version 0.3.0.

	
class wand.sequence.Sequence(image)

	The list-like object that contains every SingleImage
in the Image container. It implements
collections.Sequence [http://docs.python.org/library/collections.html#collections.Sequence] prototocol.

New in version 0.3.0.

	
current_index

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) The current index of
its internal iterator.

Note

It’s only for internal use.

	
index_context(*args, **kwds)

	Scoped setter of current_index. Should be
used for with [http://docs.python.org/reference/compound_stmts.html#with] statement e.g.:

with image.sequence.index_context(3):
 print(image.size)

Note

It’s only for internal use.

	
class wand.sequence.SingleImage(wand, container, c_original_resource)

	Each single image in Image container.
For example, it can be a frame of GIF animation.

Note that all changes on single images are invisible to their
containers until they are close()d
(destroy()ed).

New in version 0.3.0.

	
container = None

	(wand.image.Image) The container image.

	
delay

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) The delay to pause before display
the next image (in the sequence of
its container). It’s hundredths of a second.

	
index

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) The index of the single image in
the container image.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.resource — Global resource management

There is the global resource to manage in MagickWand API. This module
implements automatic global resource management through reference counting.

	
wand.resource.genesis()

	Instantiates the MagickWand API.

Warning

Don’t call this function directly. Use increment_refcount() and
decrement_refcount() functions instead.

	
wand.resource.terminus()

	Cleans up the MagickWand API.

Warning

Don’t call this function directly. Use increment_refcount() and
decrement_refcount() functions instead.

	
wand.resource.increment_refcount()

	Increments the reference_count and instantiates the MagickWand
API if it is the first use.

	
wand.resource.decrement_refcount()

	Decrements the reference_count and cleans up the MagickWand
API if it will be no more used.

	
class wand.resource.Resource

	Abstract base class for MagickWand object that requires resource
management. Its all subclasses manage the resource semiautomatically
and support with [http://docs.python.org/reference/compound_stmts.html#with] statement as well:

with Resource() as resource:
 # use the resource...
 pass

It doesn’t implement constructor by itself, so subclasses should
implement it. Every constructor should assign the pointer of its
resource data into resource attribute inside of with [http://docs.python.org/reference/compound_stmts.html#with]
allocate() context. For example:

class Pizza(Resource):
 '''My pizza yummy.'''

 def __init__(self):
 with self.allocate():
 self.resource = library.NewPizza()

New in version 0.1.2.

	
allocate(*args, **kwds)

	Allocates the memory for the resource explicitly. Its subclasses
should assign the created resource into resource attribute
inside of this context. For example:

with resource.allocate():
 resource.resource = library.NewResource()

	
c_clear_exception = NotImplemented

	(ctypes.CFUNCTYPE) The ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] function that clears
an exception of the resource.

Note

It is an abstract attribute that has to be implemented
in the subclass.

	
c_destroy_resource = NotImplemented

	(ctypes.CFUNCTYPE) The ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] function that destroys
the resource.

Note

It is an abstract attribute that has to be implemented
in the subclass.

	
c_get_exception = NotImplemented

	(ctypes.CFUNCTYPE) The ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] function that gets
an exception from the resource.

Note

It is an abstract attribute that has to be implemented
in the subclass.

	
c_is_resource = NotImplemented

	(ctypes.CFUNCTYPE) The ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] predicate function
that returns whether the given pointer (that contains a resource data
usuaully) is a valid resource.

Note

It is an abstract attribute that has to be implemented
in the subclass.

	
destroy()

	Cleans up the resource explicitly. If you use the resource in
with [http://docs.python.org/reference/compound_stmts.html#with] statement, it was called implicitly so have not to
call it.

	
get_exception()

	Gets a current exception instance.

	Returns:	a current exception. it can be None as well if any
errors aren’t occurred

	Return type:	wand.exceptions.WandException

	
raise_exception(stacklevel=1)

	Raises an exception or warning if it has occurred.

	
resource

	Internal pointer to the resource instance. It may raise
DestroyedResourceError when the resource has destroyed already.

	
exception wand.resource.DestroyedResourceError

	An error that rises when some code tries access to an already
destroyed resource.

Changed in version 0.3.0: It becomes a subtype of wand.exceptions.WandException.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.exceptions — Errors and warnings

This module maps MagickWand API’s errors and warnings to Python’s native
exceptions and warnings. You can catch all MagickWand errors using Python’s
natural way to catch errors.

See also

ImageMagick Exceptions [http://www.imagemagick.org/script/exception.php]

New in version 0.1.1.

	
exception wand.exceptions.BlobError

	Bases: wand.exceptions.WandError, exceptions.IOError [http://docs.python.org/library/exceptions.html#exceptions.IOError]

A binary large object could not be allocated, read, or written.

	
exception wand.exceptions.BlobFatalError

	Bases: wand.exceptions.WandFatalError, exceptions.IOError [http://docs.python.org/library/exceptions.html#exceptions.IOError]

A binary large object could not be allocated, read, or written.

	
exception wand.exceptions.BlobWarning

	Bases: wand.exceptions.WandWarning, exceptions.IOError [http://docs.python.org/library/exceptions.html#exceptions.IOError]

A binary large object could not be allocated, read, or written.

	
wand.exceptions.CODE_MAP = [(<class 'wand.exceptions.WandWarning'>, 'Warning'), (<class 'wand.exceptions.WandError'>, 'Error'), (<class 'wand.exceptions.WandFatalError'>, 'FatalError')]

	(list [http://docs.python.org/library/functions.html#list]) The list of (base_class, suffix) pairs (for each code).
It would be zipped with DOMAIN_MAP pairs’ last element.

	
exception wand.exceptions.CacheError

	Bases: wand.exceptions.WandError

Pixels could not be read or written to the pixel cache.

	
exception wand.exceptions.CacheFatalError

	Bases: wand.exceptions.WandFatalError

Pixels could not be read or written to the pixel cache.

	
exception wand.exceptions.CacheWarning

	Bases: wand.exceptions.WandWarning

Pixels could not be read or written to the pixel cache.

	
exception wand.exceptions.CoderError

	Bases: wand.exceptions.WandError

There was a problem with an image coder.

	
exception wand.exceptions.CoderFatalError

	Bases: wand.exceptions.WandFatalError

There was a problem with an image coder.

	
exception wand.exceptions.CoderWarning

	Bases: wand.exceptions.WandWarning

There was a problem with an image coder.

	
exception wand.exceptions.ConfigureError

	Bases: wand.exceptions.WandError

There was a problem getting a configuration file.

	
exception wand.exceptions.ConfigureFatalError

	Bases: wand.exceptions.WandFatalError

There was a problem getting a configuration file.

	
exception wand.exceptions.ConfigureWarning

	Bases: wand.exceptions.WandWarning

There was a problem getting a configuration file.

	
exception wand.exceptions.CorruptImageError

	Bases: wand.exceptions.WandError, exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError]

The image file may be corrupt.

	
exception wand.exceptions.CorruptImageFatalError

	Bases: wand.exceptions.WandFatalError, exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError]

The image file may be corrupt.

	
exception wand.exceptions.CorruptImageWarning

	Bases: wand.exceptions.WandWarning, exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError]

The image file may be corrupt.

	
wand.exceptions.DOMAIN_MAP = [('ResourceLimit', 'A program resource is exhausted e.g. not enough memory.', (<type 'exceptions.MemoryError'>,), [300, 400, 700]), ('Type', 'A font is unavailable; a substitution may have occurred.', (), [305, 405, 705]), ('Option', 'A command-line option was malformed.', (), [310, 410, 710]), ('Delegate', 'An ImageMagick delegate failed to complete.', (), [315, 415, 715]), ('MissingDelegate', 'The image type can not be read or written because the appropriate; delegate is missing.', (<type 'exceptions.ImportError'>,), [320, 420, 720]), ('CorruptImage', 'The image file may be corrupt.', (<type 'exceptions.ValueError'>,), [325, 425, 725]), ('FileOpen', 'The image file could not be opened for reading or writing.', (<type 'exceptions.IOError'>,), [330, 430, 730]), ('Blob', 'A binary large object could not be allocated, read, or written.', (<type 'exceptions.IOError'>,), [335, 435, 735]), ('Stream', 'There was a problem reading or writing from a stream.', (<type 'exceptions.IOError'>,), [340, 440, 740]), ('Cache', 'Pixels could not be read or written to the pixel cache.', (), [345, 445, 745]), ('Coder', 'There was a problem with an image coder.', (), [350, 450, 750]), ('Module', 'There was a problem with an image module.', (), [355, 455, 755]), ('Draw', 'A drawing operation failed.', (), [360, 460, 760]), ('Image', 'The operation could not complete due to an incompatible image.', (), [365, 465, 765]), ('Wand', 'There was a problem specific to the MagickWand API.', (), [370, 470, 770]), ('Random', 'There is a problem generating a true or pseudo-random number.', (), [375, 475, 775]), ('XServer', 'An X resource is unavailable.', (), [380, 480, 780]), ('Monitor', 'There was a problem activating the progress monitor.', (), [385, 485, 785]), ('Registry', 'There was a problem getting or setting the registry.', (), [390, 490, 790]), ('Configure', 'There was a problem getting a configuration file.', (), [395, 495, 795]), ('Policy', 'A policy denies access to a delegate, coder, filter, path, or resource.', (), [399, 499, 799])]

	(list [http://docs.python.org/library/functions.html#list]) A list of error/warning domains, these descriptions and
codes. The form of elements is like: (domain name, description, codes).

	
exception wand.exceptions.DelegateError

	Bases: wand.exceptions.WandError

An ImageMagick delegate failed to complete.

	
exception wand.exceptions.DelegateFatalError

	Bases: wand.exceptions.WandFatalError

An ImageMagick delegate failed to complete.

	
exception wand.exceptions.DelegateWarning

	Bases: wand.exceptions.WandWarning

An ImageMagick delegate failed to complete.

	
exception wand.exceptions.DrawError

	Bases: wand.exceptions.WandError

A drawing operation failed.

	
exception wand.exceptions.DrawFatalError

	Bases: wand.exceptions.WandFatalError

A drawing operation failed.

	
exception wand.exceptions.DrawWarning

	Bases: wand.exceptions.WandWarning

A drawing operation failed.

	
exception wand.exceptions.FileOpenError

	Bases: wand.exceptions.WandError, exceptions.IOError [http://docs.python.org/library/exceptions.html#exceptions.IOError]

The image file could not be opened for reading or writing.

	
exception wand.exceptions.FileOpenFatalError

	Bases: wand.exceptions.WandFatalError, exceptions.IOError [http://docs.python.org/library/exceptions.html#exceptions.IOError]

The image file could not be opened for reading or writing.

	
exception wand.exceptions.FileOpenWarning

	Bases: wand.exceptions.WandWarning, exceptions.IOError [http://docs.python.org/library/exceptions.html#exceptions.IOError]

The image file could not be opened for reading or writing.

	
exception wand.exceptions.ImageError

	Bases: wand.exceptions.WandError

The operation could not complete due to an incompatible image.

	
exception wand.exceptions.ImageFatalError

	Bases: wand.exceptions.WandFatalError

The operation could not complete due to an incompatible image.

	
exception wand.exceptions.ImageWarning

	Bases: wand.exceptions.WandWarning

The operation could not complete due to an incompatible image.

	
exception wand.exceptions.MissingDelegateError

	Bases: wand.exceptions.WandError, exceptions.ImportError [http://docs.python.org/library/exceptions.html#exceptions.ImportError]

The image type can not be read or written because the appropriate; delegate is missing.

	
exception wand.exceptions.MissingDelegateFatalError

	Bases: wand.exceptions.WandFatalError, exceptions.ImportError [http://docs.python.org/library/exceptions.html#exceptions.ImportError]

The image type can not be read or written because the appropriate; delegate is missing.

	
exception wand.exceptions.MissingDelegateWarning

	Bases: wand.exceptions.WandWarning, exceptions.ImportError [http://docs.python.org/library/exceptions.html#exceptions.ImportError]

The image type can not be read or written because the appropriate; delegate is missing.

	
exception wand.exceptions.ModuleError

	Bases: wand.exceptions.WandError

There was a problem with an image module.

	
exception wand.exceptions.ModuleFatalError

	Bases: wand.exceptions.WandFatalError

There was a problem with an image module.

	
exception wand.exceptions.ModuleWarning

	Bases: wand.exceptions.WandWarning

There was a problem with an image module.

	
exception wand.exceptions.MonitorError

	Bases: wand.exceptions.WandError

There was a problem activating the progress monitor.

	
exception wand.exceptions.MonitorFatalError

	Bases: wand.exceptions.WandFatalError

There was a problem activating the progress monitor.

	
exception wand.exceptions.MonitorWarning

	Bases: wand.exceptions.WandWarning

There was a problem activating the progress monitor.

	
exception wand.exceptions.OptionError

	Bases: wand.exceptions.WandError

A command-line option was malformed.

	
exception wand.exceptions.OptionFatalError

	Bases: wand.exceptions.WandFatalError

A command-line option was malformed.

	
exception wand.exceptions.OptionWarning

	Bases: wand.exceptions.WandWarning

A command-line option was malformed.

	
exception wand.exceptions.PolicyError

	Bases: wand.exceptions.WandError

A policy denies access to a delegate, coder, filter, path, or resource.

	
exception wand.exceptions.PolicyFatalError

	Bases: wand.exceptions.WandFatalError

A policy denies access to a delegate, coder, filter, path, or resource.

	
exception wand.exceptions.PolicyWarning

	Bases: wand.exceptions.WandWarning

A policy denies access to a delegate, coder, filter, path, or resource.

	
exception wand.exceptions.RandomError

	Bases: wand.exceptions.WandError

There is a problem generating a true or pseudo-random number.

	
exception wand.exceptions.RandomFatalError

	Bases: wand.exceptions.WandFatalError

There is a problem generating a true or pseudo-random number.

	
exception wand.exceptions.RandomWarning

	Bases: wand.exceptions.WandWarning

There is a problem generating a true or pseudo-random number.

	
exception wand.exceptions.RegistryError

	Bases: wand.exceptions.WandError

There was a problem getting or setting the registry.

	
exception wand.exceptions.RegistryFatalError

	Bases: wand.exceptions.WandFatalError

There was a problem getting or setting the registry.

	
exception wand.exceptions.RegistryWarning

	Bases: wand.exceptions.WandWarning

There was a problem getting or setting the registry.

	
exception wand.exceptions.ResourceLimitError

	Bases: wand.exceptions.WandError, exceptions.MemoryError [http://docs.python.org/library/exceptions.html#exceptions.MemoryError]

A program resource is exhausted e.g. not enough memory.

	
exception wand.exceptions.ResourceLimitFatalError

	Bases: wand.exceptions.WandFatalError, exceptions.MemoryError [http://docs.python.org/library/exceptions.html#exceptions.MemoryError]

A program resource is exhausted e.g. not enough memory.

	
exception wand.exceptions.ResourceLimitWarning

	Bases: wand.exceptions.WandWarning, exceptions.MemoryError [http://docs.python.org/library/exceptions.html#exceptions.MemoryError]

A program resource is exhausted e.g. not enough memory.

	
exception wand.exceptions.StreamError

	Bases: wand.exceptions.WandError, exceptions.IOError [http://docs.python.org/library/exceptions.html#exceptions.IOError]

There was a problem reading or writing from a stream.

	
exception wand.exceptions.StreamFatalError

	Bases: wand.exceptions.WandFatalError, exceptions.IOError [http://docs.python.org/library/exceptions.html#exceptions.IOError]

There was a problem reading or writing from a stream.

	
exception wand.exceptions.StreamWarning

	Bases: wand.exceptions.WandWarning, exceptions.IOError [http://docs.python.org/library/exceptions.html#exceptions.IOError]

There was a problem reading or writing from a stream.

	
wand.exceptions.TYPE_MAP = {385: <class 'wand.exceptions.MonitorWarning'>, 770: <class 'wand.exceptions.WandFatalError'>, 390: <class 'wand.exceptions.RegistryWarning'>, 775: <class 'wand.exceptions.RandomFatalError'>, 395: <class 'wand.exceptions.ConfigureWarning'>, 780: <class 'wand.exceptions.XServerFatalError'>, 399: <class 'wand.exceptions.PolicyWarning'>, 400: <class 'wand.exceptions.ResourceLimitError'>, 785: <class 'wand.exceptions.MonitorFatalError'>, 405: <class 'wand.exceptions.TypeError'>, 790: <class 'wand.exceptions.RegistryFatalError'>, 410: <class 'wand.exceptions.OptionError'>, 795: <class 'wand.exceptions.ConfigureFatalError'>, 415: <class 'wand.exceptions.DelegateError'>, 420: <class 'wand.exceptions.MissingDelegateError'>, 499: <class 'wand.exceptions.PolicyError'>, 425: <class 'wand.exceptions.CorruptImageError'>, 300: <class 'wand.exceptions.ResourceLimitWarning'>, 430: <class 'wand.exceptions.FileOpenError'>, 305: <class 'wand.exceptions.TypeWarning'>, 435: <class 'wand.exceptions.BlobError'>, 310: <class 'wand.exceptions.OptionWarning'>, 440: <class 'wand.exceptions.StreamError'>, 315: <class 'wand.exceptions.DelegateWarning'>, 700: <class 'wand.exceptions.ResourceLimitFatalError'>, 445: <class 'wand.exceptions.CacheError'>, 320: <class 'wand.exceptions.MissingDelegateWarning'>, 705: <class 'wand.exceptions.TypeFatalError'>, 450: <class 'wand.exceptions.CoderError'>, 325: <class 'wand.exceptions.CorruptImageWarning'>, 710: <class 'wand.exceptions.OptionFatalError'>, 455: <class 'wand.exceptions.ModuleError'>, 330: <class 'wand.exceptions.FileOpenWarning'>, 715: <class 'wand.exceptions.DelegateFatalError'>, 460: <class 'wand.exceptions.DrawError'>, 335: <class 'wand.exceptions.BlobWarning'>, 720: <class 'wand.exceptions.MissingDelegateFatalError'>, 465: <class 'wand.exceptions.ImageError'>, 340: <class 'wand.exceptions.StreamWarning'>, 725: <class 'wand.exceptions.CorruptImageFatalError'>, 470: <class 'wand.exceptions.WandError'>, 345: <class 'wand.exceptions.CacheWarning'>, 730: <class 'wand.exceptions.FileOpenFatalError'>, 475: <class 'wand.exceptions.RandomError'>, 799: <class 'wand.exceptions.PolicyFatalError'>, 350: <class 'wand.exceptions.CoderWarning'>, 735: <class 'wand.exceptions.BlobFatalError'>, 480: <class 'wand.exceptions.XServerError'>, 355: <class 'wand.exceptions.ModuleWarning'>, 740: <class 'wand.exceptions.StreamFatalError'>, 485: <class 'wand.exceptions.MonitorError'>, 360: <class 'wand.exceptions.DrawWarning'>, 745: <class 'wand.exceptions.CacheFatalError'>, 490: <class 'wand.exceptions.RegistryError'>, 365: <class 'wand.exceptions.ImageWarning'>, 750: <class 'wand.exceptions.CoderFatalError'>, 495: <class 'wand.exceptions.ConfigureError'>, 370: <class 'wand.exceptions.WandWarning'>, 755: <class 'wand.exceptions.ModuleFatalError'>, 375: <class 'wand.exceptions.RandomWarning'>, 760: <class 'wand.exceptions.DrawFatalError'>, 380: <class 'wand.exceptions.XServerWarning'>, 765: <class 'wand.exceptions.ImageFatalError'>}

	(dict [http://docs.python.org/library/stdtypes.html#dict]) The dictionary of (code, exc_type).

	
exception wand.exceptions.TypeError

	Bases: wand.exceptions.WandError

A font is unavailable; a substitution may have occurred.

	
exception wand.exceptions.TypeFatalError

	Bases: wand.exceptions.WandFatalError

A font is unavailable; a substitution may have occurred.

	
exception wand.exceptions.TypeWarning

	Bases: wand.exceptions.WandWarning

A font is unavailable; a substitution may have occurred.

	
exception wand.exceptions.WandError

	Bases: wand.exceptions.WandError

There was a problem specific to the MagickWand API.

	
exception wand.exceptions.WandException

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

All Wand-related exceptions are derived from this class.

	
exception wand.exceptions.WandFatalError

	Bases: wand.exceptions.WandFatalError

There was a problem specific to the MagickWand API.

	
exception wand.exceptions.WandLibraryVersionError

	Bases: wand.exceptions.WandException

Base class for Wand-related ImageMagick version errors.

New in version 0.3.2.

	
exception wand.exceptions.WandWarning

	Bases: wand.exceptions.WandWarning

There was a problem specific to the MagickWand API.

	
exception wand.exceptions.XServerError

	Bases: wand.exceptions.WandError

An X resource is unavailable.

	
exception wand.exceptions.XServerFatalError

	Bases: wand.exceptions.WandFatalError

An X resource is unavailable.

	
exception wand.exceptions.XServerWarning

	Bases: wand.exceptions.WandWarning

An X resource is unavailable.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.api — Low-level interfaces

Changed in version 0.1.10: Changed to throw ImportError [http://docs.python.org/library/exceptions.html#exceptions.ImportError] instead of
AttributeError [http://docs.python.org/library/exceptions.html#exceptions.AttributeError] when the shared library fails to load.

	
class wand.api.c_magick_char_p

	This subclass prevents the automatic conversion behavior of
ctypes.c_char_p [http://docs.python.org/library/ctypes.html#ctypes.c_char_p], allowing memory to be properly freed in the
destructor. It must only be used for non-const character pointers
returned by ImageMagick functions.

	
wand.api.library

	(ctypes.CDLL [http://docs.python.org/library/ctypes.html#ctypes.CDLL]) The MagickWand library.

	
wand.api.libc

	(ctypes.CDLL [http://docs.python.org/library/ctypes.html#ctypes.CDLL]) The C standard library.

	
wand.api.libmagick

	(ctypes.CDLL [http://docs.python.org/library/ctypes.html#ctypes.CDLL]) The ImageMagick library. It is the same with
library on platforms other than Windows.

New in version 0.1.10.

	
wand.api.load_library()

	Loads the MagickWand library.

	Returns:	the MagickWand library and the ImageMagick library

	Return type:	ctypes.CDLL [http://docs.python.org/library/ctypes.html#ctypes.CDLL]

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.compat — Compatibility layer

This module provides several subtle things to support
multiple Python versions (2.6, 2.7, 3.2, 3.3) and VM implementations
(CPython, PyPy).

	
wand.compat.PY3 = False

	(bool [http://docs.python.org/library/functions.html#bool]) Whether it is Python 3.x or not.

	
wand.compat.binary(string, var=None)

	Makes string to str [http://docs.python.org/library/functions.html#str] in Python 2.
Makes string to bytes in Python 3.

	Parameters:	
	string (bytes, str [http://docs.python.org/library/functions.html#str], unicode) – a string to cast it to binary_type

	var (str [http://docs.python.org/library/functions.html#str]) – an optional variable name to be used for error message

	
wand.compat.binary_type

	(type [http://docs.python.org/library/functions.html#type]) Type for representing binary data. str [http://docs.python.org/library/functions.html#str] in Python 2
and bytes in Python 3.

alias of str [http://docs.python.org/library/functions.html#str]

	
wand.compat.encode_filename(filename)

	If filename is a text_type, encode it to
binary_type according to filesystem’s default encoding.

	
wand.compat.file_types = (<class 'io.RawIOBase'>, <type 'file'>)

	(type [http://docs.python.org/library/functions.html#type], tuple) Types for file objects that have
fileno().

	
wand.compat.nested(*args, **kwds)

	Combine multiple context managers into a single nested context manager.

This function has been deprecated in favour of the multiple manager form
of the with statement.

The one advantage of this function over the multiple manager form of the
with statement is that argument unpacking allows it to be
used with a variable number of context managers as follows:

	with nested(*managers):

	do_something()

	
wand.compat.string_type

	(type [http://docs.python.org/library/functions.html#type]) Type for text data. basestring in Python 2
and str [http://docs.python.org/library/functions.html#str] in Python 3.

alias of basestring

	
wand.compat.text(string)

	Makes string to str [http://docs.python.org/library/functions.html#str] in Python 3.
Does nothing in Python 2.

	Parameters:	string (bytes, str [http://docs.python.org/library/functions.html#str], unicode) – a string to cast it to text_type

	
wand.compat.text_type

	(type [http://docs.python.org/library/functions.html#type]) Type for representing Unicode textual data.
unicode in Python 2 and str [http://docs.python.org/library/functions.html#str] in Python 3.

alias of unicode

	
class wand.compat.xrange

	The xrange() function. Alias for range() [http://docs.python.org/library/functions.html#range] in Python 3.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.display — Displaying images

The display() functions shows you the image. It is useful for
debugging.

If you are in Mac, the image will be opened by your default image application
(Preview.app usually).

If you are in Windows, the image will be opened by imdisplay.exe,
or your default image application (Windows Photo Viewer usually)
if imdisplay.exe is unavailable.

You can use it from CLI also. Execute wand.display module through
python -m option:

$ python -m wand.display wandtests/assets/mona-lisa.jpg

New in version 0.1.9.

	
wand.display.display(image, server_name=':0')

	Displays the passed image.

	Parameters:	
	image (Image) – an image to display

	server_name (str [http://docs.python.org/library/functions.html#str]) – X11 server name to use. it is ignored and not used
for Mac. default is ':0'

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.version — Version data

You can find the current version in the command line interface:

$ python -m wand.version
0.3.10
$ python -m wand.version --verbose
Wand 0.3.10
ImageMagick 6.7.7-6 2012-06-03 Q16 http://www.imagemagick.org

New in version 0.2.0: The command line interface.

New in version 0.2.2: The --verbose/-v option which also prints ImageMagick library
version for CLI.

	
wand.version.VERSION = '0.3.10'

	(basestring) The version string e.g. '0.1.2'.

Changed in version 0.1.9: Becomes string. (It was tuple before.)

	
wand.version.VERSION_INFO = (0, 3, 10)

	(tuple) The version tuple e.g. (0, 1, 2).

Changed in version 0.1.9: Becomes tuple. (It was string before.)

	
wand.version.MAGICK_VERSION = None

	(basestring) The version string of the linked ImageMagick
library. The exactly same string to the result of
GetMagickVersion() function.

Example:

'ImageMagick 6.7.7-6 2012-06-03 Q16 http://www.imagemagick.org'

New in version 0.2.1.

	
wand.version.MAGICK_VERSION_INFO = None

	(tuple) The version tuple e.g. (6, 7, 7, 6) of
MAGICK_VERSION.

New in version 0.2.1.

	
wand.version.MAGICK_VERSION_NUMBER = None

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) The version number of the linked
ImageMagick library.

New in version 0.2.1.

	
wand.version.MAGICK_RELEASE_DATE = None

	(basestring) The date string e.g. '2012-06-03' of
MAGICK_RELEASE_DATE_STRING. This value is the exactly same
string to the result of GetMagickReleaseDate() function.

New in version 0.2.1.

	
wand.version.MAGICK_RELEASE_DATE_STRING = None

	(datetime.date [http://docs.python.org/library/datetime.html#datetime.date]) The release date of the linked ImageMagick
library. The same to the result of GetMagickReleaseDate()
function.

New in version 0.2.1.

	
wand.version.QUANTUM_DEPTH = None

	(numbers.Integral [http://docs.python.org/library/numbers.html#numbers.Integral]) The quantum depth configuration of
the linked ImageMagick library. One of 8, 16, 32, or 64.

New in version 0.3.0.

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Wand

 Python Module Index

 w

 			

 		
 w	

 	[image: -]
 	
 wand	

 	
 	
 wand.api	

 	
 	
 wand.color	

 	
 	
 wand.compat	

 	
 	
 wand.display	

 	
 	
 wand.drawing	

 	
 	
 wand.exceptions	

 	
 	
 wand.font	

 	
 	
 wand.image	

 	
 	
 wand.resource	

 	
 	
 wand.sequence	

 	
 	
 wand.version	

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Wand

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	

 	affine() (wand.drawing.Drawing method)

 	allocate() (wand.resource.Resource method)

 	alpha (wand.color.Color attribute)

 	alpha_channel (wand.image.BaseImage attribute)

 	ALPHA_CHANNEL_TYPES (in module wand.image)

 	alpha_int8 (wand.color.Color attribute)

 	

 	alpha_quantum (wand.color.Color attribute)

 	animation (wand.image.BaseImage attribute)

 	antialias (wand.font.Font attribute)

 	arc() (wand.drawing.Drawing method)

 	ascender (wand.drawing.FontMetrics attribute)

B

 	

 	background_color (wand.image.BaseImage attribute)

 	BaseImage (class in wand.image)

 	bezier() (wand.drawing.Drawing method)

 	binary() (in module wand.compat)

 	binary_type (in module wand.compat)

 	blank() (wand.image.Image method)

 	BlobError

 	

 	BlobFatalError

 	BlobWarning

 	blue (wand.color.Color attribute)

 	blue_int8 (wand.color.Color attribute)

 	blue_quantum (wand.color.Color attribute)

 	border() (wand.image.Image method)

 	border_color (wand.drawing.Drawing attribute)

C

 	

 	c_clear_exception (wand.resource.Resource attribute)

 	c_destroy_resource (wand.resource.Resource attribute)

 	c_equals() (wand.color.Color static method)

 	c_get_exception (wand.resource.Resource attribute)

 	c_is_resource (wand.resource.Resource attribute)

 	c_magick_char_p (class in wand.api)

 	CacheError

 	CacheFatalError

 	CacheWarning

 	caption() (wand.image.BaseImage method)

 	channel_depths (wand.image.Image attribute)

 	channel_images (wand.image.Image attribute)

 	ChannelDepthDict (class in wand.image)

 	ChannelImageDict (class in wand.image)

 	CHANNELS (in module wand.image)

 	character_height (wand.drawing.FontMetrics attribute)

 	character_width (wand.drawing.FontMetrics attribute)

 	circle() (wand.drawing.Drawing method)

 	clear() (wand.image.Image method)

 	CLIP_PATH_UNITS (in module wand.drawing)

 	clip_rule (wand.drawing.Drawing attribute)

 	clip_units (wand.drawing.Drawing attribute)

 	clone() (wand.drawing.Drawing method)

 	

 	(wand.image.BaseImage method)

 	(wand.image.Iterator method)

 	close() (wand.image.Image method)

 	ClosedImageError

 	CODE_MAP (in module wand.exceptions)

 	

 	CoderError

 	CoderFatalError

 	CoderWarning

 	Color (class in wand.color)

 	color (wand.font.Font attribute)

 	color() (wand.drawing.Drawing method)

 	colorspace (wand.image.BaseImage attribute)

 	COLORSPACE_TYPES (in module wand.image)

 	comment() (wand.drawing.Drawing method)

 	composite() (wand.drawing.Drawing method)

 	

 	(wand.image.BaseImage method)

 	composite_channel() (wand.image.BaseImage method)

 	COMPOSITE_OPERATORS (in module wand.image)

 	compression (wand.image.Image attribute)

 	compression_quality (wand.image.BaseImage attribute)

 	COMPRESSION_TYPES (in module wand.image)

 	ConfigureError

 	ConfigureFatalError

 	ConfigureWarning

 	container (wand.sequence.SingleImage attribute)

 	convert() (wand.image.Image method)

 	CorruptImageError

 	CorruptImageFatalError

 	CorruptImageWarning

 	crop() (wand.image.BaseImage method)

 	current_index (wand.sequence.Sequence attribute)

D

 	

 	decrement_refcount() (in module wand.resource)

 	delay (wand.sequence.SingleImage attribute)

 	DelegateError

 	DelegateFatalError

 	DelegateWarning

 	depth (wand.image.BaseImage attribute)

 	descender (wand.drawing.FontMetrics attribute)

 	destroy() (wand.resource.Resource method)

 	DestroyedResourceError

 	

 	dirty (wand.image.BaseImage attribute)

 	display() (in module wand.display)

 	DOMAIN_MAP (in module wand.exceptions)

 	draw() (wand.drawing.Drawing method)

 	DrawError

 	DrawFatalError

 	Drawing (class in wand.drawing)

 	DrawWarning

E

 	

 	ellipse() (wand.drawing.Drawing method)

 	encode_filename() (in module wand.compat)

 	
 environment variable

 	

 	MAGICK_HOME, [1]

 	

 	equalize() (wand.image.BaseImage method)

 	EVALUATE_OPS (in module wand.image)

F

 	

 	file_types (in module wand.compat)

 	FileOpenError

 	FileOpenFatalError

 	FileOpenWarning

 	fill_color (wand.drawing.Drawing attribute)

 	fill_opacity (wand.drawing.Drawing attribute)

 	fill_rule (wand.drawing.Drawing attribute)

 	FILL_RULE_TYPES (in module wand.drawing)

 	FILTER_TYPES (in module wand.image)

 	flip() (wand.image.BaseImage method)

 	flop() (wand.image.BaseImage method)

 	

 	Font (class in wand.font)

 	font (wand.image.BaseImage attribute)

 	FONT_METRICS_ATTRIBUTES (in module wand.drawing)

 	font_path (wand.image.BaseImage attribute)

 	font_resolution (wand.drawing.Drawing attribute)

 	font_size (wand.drawing.Drawing attribute)

 	

 	(wand.image.BaseImage attribute)

 	font_stretch (wand.drawing.Drawing attribute)

 	font_style (wand.drawing.Drawing attribute)

 	font_weight (wand.drawing.Drawing attribute)

 	FontMetrics (class in wand.drawing)

 	format (wand.image.Image attribute)

G

 	

 	gaussian_blur() (wand.image.BaseImage method)

 	genesis() (in module wand.resource)

 	get_exception() (wand.resource.Resource method)

 	get_font_metrics() (wand.drawing.Drawing method)

 	gravity (wand.drawing.Drawing attribute)

 	

 	(wand.image.BaseImage attribute)

 	

 	GRAVITY_TYPES (in module wand.drawing)

 	

 	(in module wand.image)

 	green (wand.color.Color attribute)

 	green_int8 (wand.color.Color attribute)

 	green_quantum (wand.color.Color attribute)

H

 	

 	height (wand.image.BaseImage attribute)

 	histogram (wand.image.BaseImage attribute)

 	

 	HistogramDict (class in wand.image)

I

 	

 	Image (class in wand.image)

 	image (wand.image.ImageProperty attribute)

 	IMAGE_TYPES (in module wand.image)

 	ImageError

 	ImageFatalError

 	ImageProperty (class in wand.image)

 	

 	ImageWarning

 	increment_refcount() (in module wand.resource)

 	index (wand.sequence.SingleImage attribute)

 	index_context() (wand.sequence.Sequence method)

 	Iterator (class in wand.image)

L

 	

 	libc (in module wand.api)

 	libmagick (in module wand.api)

 	library (in module wand.api)

 	line() (wand.drawing.Drawing method)

 	

 	LINE_CAP_TYPES (in module wand.drawing)

 	LINE_JOIN_TYPES (in module wand.drawing)

 	liquid_rescale() (wand.image.BaseImage method)

 	load_library() (in module wand.api)

M

 	

 	MAGICK_HOME, [1]

 	MAGICK_RELEASE_DATE (in module wand.version)

 	MAGICK_RELEASE_DATE_STRING (in module wand.version)

 	MAGICK_VERSION (in module wand.version)

 	MAGICK_VERSION_INFO (in module wand.version)

 	MAGICK_VERSION_NUMBER (in module wand.version)

 	make_blob() (wand.image.Image method)

 	manipulative() (in module wand.image)

 	matte() (wand.drawing.Drawing method)

 	maximum_horizontal_advance (wand.drawing.FontMetrics attribute)

 	Metadata (class in wand.image)

 	metadata (wand.image.Image attribute)

 	

 	mimetype (wand.image.Image attribute)

 	MissingDelegateError

 	MissingDelegateFatalError

 	MissingDelegateWarning

 	modulate() (wand.image.BaseImage method)

 	ModuleError

 	ModuleFatalError

 	ModuleWarning

 	MonitorError

 	MonitorFatalError

 	MonitorWarning

N

 	

 	negate() (wand.image.BaseImage method)

 	nested() (in module wand.compat)

 	

 	normalize() (wand.image.Image method)

 	normalized_string (wand.color.Color attribute)

O

 	

 	opacity (wand.drawing.Drawing attribute)

 	OptionDict (class in wand.image)

 	OptionError

 	OptionFatalError

 	

 	options (wand.image.BaseImage attribute)

 	OptionWarning

 	orientation (wand.image.BaseImage attribute)

 	ORIENTATION_TYPES (in module wand.image)

P

 	

 	PAINT_METHOD_TYPES (in module wand.drawing)

 	path (wand.font.Font attribute)

 	path_close() (wand.drawing.Drawing method)

 	path_curve() (wand.drawing.Drawing method)

 	path_curve_to_quadratic_bezier() (wand.drawing.Drawing method)

 	path_elliptic_arc() (wand.drawing.Drawing method)

 	path_finish() (wand.drawing.Drawing method)

 	path_horizontal_line() (wand.drawing.Drawing method)

 	path_line() (wand.drawing.Drawing method)

 	path_move() (wand.drawing.Drawing method)

 	path_start() (wand.drawing.Drawing method)

 	path_vertical_line() (wand.drawing.Drawing method)

 	point() (wand.drawing.Drawing method)

 	PolicyError

 	

 	PolicyFatalError

 	PolicyWarning

 	polygon() (wand.drawing.Drawing method)

 	polyline() (wand.drawing.Drawing method)

 	pop() (wand.drawing.Drawing method)

 	pop_clip_path() (wand.drawing.Drawing method)

 	pop_defs() (wand.drawing.Drawing method)

 	pop_pattern() (wand.drawing.Drawing method)

 	push() (wand.drawing.Drawing method)

 	push_clip_path() (wand.drawing.Drawing method)

 	push_defs() (wand.drawing.Drawing method)

 	push_pattern() (wand.drawing.Drawing method)

 	PY3 (in module wand.compat)

Q

 	

 	QUANTUM_DEPTH (in module wand.version)

 	

 	quantum_range (wand.image.BaseImage attribute)

R

 	

 	raise_exception() (wand.resource.Resource method)

 	RandomError

 	RandomFatalError

 	RandomWarning

 	read() (wand.image.Image method)

 	rectangle() (wand.drawing.Drawing method)

 	red (wand.color.Color attribute)

 	red_int8 (wand.color.Color attribute)

 	red_quantum (wand.color.Color attribute)

 	RegistryError

 	RegistryFatalError

 	

 	RegistryWarning

 	reset_coords() (wand.image.BaseImage method)

 	resize() (wand.image.BaseImage method)

 	resolution (wand.image.BaseImage attribute)

 	Resource (class in wand.resource)

 	resource (wand.resource.Resource attribute)

 	ResourceLimitError

 	ResourceLimitFatalError

 	ResourceLimitWarning

 	rotate() (wand.drawing.Drawing method)

 	

 	(wand.image.BaseImage method)

S

 	

 	sample() (wand.image.BaseImage method)

 	save() (wand.image.Image method)

 	scale() (wand.drawing.Drawing method)

 	scale_quantum_to_int8() (in module wand.color)

 	Sequence (class in wand.sequence)

 	sequence (wand.image.BaseImage attribute)

 	set_fill_pattern_url() (wand.drawing.Drawing method)

 	set_stroke_pattern_url() (wand.drawing.Drawing method)

 	signature (wand.image.BaseImage attribute)

 	SingleImage (class in wand.sequence)

 	size (wand.font.Font attribute)

 	

 	(wand.image.BaseImage attribute)

 	skew() (wand.drawing.Drawing method)

 	StreamError

 	StreamFatalError

 	StreamWarning

 	

 	STRETCH_TYPES (in module wand.drawing)

 	string (wand.color.Color attribute)

 	string_type (in module wand.compat)

 	strip() (wand.image.Image method)

 	stroke_antialias (wand.drawing.Drawing attribute)

 	stroke_color (wand.drawing.Drawing attribute)

 	stroke_dash_array (wand.drawing.Drawing attribute)

 	stroke_dash_offset (wand.drawing.Drawing attribute)

 	stroke_line_cap (wand.drawing.Drawing attribute)

 	stroke_line_join (wand.drawing.Drawing attribute)

 	stroke_miter_limit (wand.drawing.Drawing attribute)

 	stroke_opacity (wand.drawing.Drawing attribute)

 	stroke_width (wand.drawing.Drawing attribute)

 	STYLE_TYPES (in module wand.drawing)

T

 	

 	terminus() (in module wand.resource)

 	text() (in module wand.compat)

 	

 	(wand.drawing.Drawing method)

 	TEXT_ALIGN_TYPES (in module wand.drawing)

 	text_alignment (wand.drawing.Drawing attribute)

 	text_antialias (wand.drawing.Drawing attribute)

 	text_decoration (wand.drawing.Drawing attribute)

 	TEXT_DECORATION_TYPES (in module wand.drawing)

 	text_direction (wand.drawing.Drawing attribute)

 	TEXT_DIRECTION_TYPES (in module wand.drawing)

 	text_height (wand.drawing.FontMetrics attribute)

 	text_interline_spacing (wand.drawing.Drawing attribute)

 	text_interword_spacing (wand.drawing.Drawing attribute)

 	text_kerning (wand.drawing.Drawing attribute)

 	text_type (in module wand.compat)

 	

 	text_under_color (wand.drawing.Drawing attribute)

 	text_width (wand.drawing.FontMetrics attribute)

 	threshold() (wand.image.BaseImage method)

 	transform() (wand.image.BaseImage method)

 	translate() (wand.drawing.Drawing method)

 	transparent_color() (wand.image.BaseImage method)

 	transparentize() (wand.image.BaseImage method)

 	trim() (wand.image.Image method)

 	type (wand.image.BaseImage attribute)

 	TYPE_MAP (in module wand.exceptions)

 	TypeError

 	TypeFatalError

 	TypeWarning

U

 	

 	UNIT_TYPES (in module wand.image)

 	units (wand.image.BaseImage attribute)

 	

 	unsharp_mask() (wand.image.BaseImage method)

V

 	

 	vector_graphics (wand.drawing.Drawing attribute)

 	VERSION (in module wand.version)

 	

 	VERSION_INFO (in module wand.version)

 	viewbox() (wand.drawing.Drawing method)

W

 	

 	wand (module)

 	

 	(wand.image.BaseImage attribute)

 	wand.api (module)

 	wand.color (module)

 	wand.compat (module)

 	wand.display (module)

 	wand.drawing (module)

 	wand.exceptions (module)

 	wand.font (module)

 	wand.image (module)

 	wand.resource (module)

 	

 	wand.sequence (module)

 	wand.version (module)

 	WandError

 	WandException

 	WandFatalError

 	WandLibraryVersionError

 	WandWarning

 	watermark() (wand.image.BaseImage method)

 	width (wand.image.BaseImage attribute)

X

 	

 	x (wand.drawing.FontMetrics attribute)

 	x1 (wand.drawing.FontMetrics attribute)

 	x2 (wand.drawing.FontMetrics attribute)

 	xrange (class in wand.compat)

 	

 	XServerError

 	XServerFatalError

 	XServerWarning

Y

 	

 	y (wand.drawing.FontMetrics attribute)

 	y1 (wand.drawing.FontMetrics attribute)

 	

 	y2 (wand.drawing.FontMetrics attribute)

 Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/minus.png

_static/wand.png
)@ g

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

_images/windows-envvar.png
[el@] = |

@)~ v Sy sy > S

Cont
& Deid
& Remol

@ Syster
® A

Seeal

Actior

Windd,

Variable value:

Startup and Recovery
System sartup, system ailure, and debugging

ok) [oma) o |
o
Moo —

Tools

%] [[Search ControlPanel B
‘System Properties (] @
Compuier Name | Hardwars | Advanced | System Protection | Remote] | Environment Variables [=
You must be logged on as an Administrator to make most of these changes.
ol User variables for Hong Mihee
Vi efct,processorschediing, memor usage, and vtual memory varble vake -
arm_ssH £ rogram Fles PUTTY pirk.exe g
SSHABTPD 213
- - 1.3880
New System Variable ==
User Prfies A = P takocalirenp =
Desktop seftings related to your logon
Varblename: MAGIGK HOME -

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		Wand »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Hong Minhee.
 Created using Sphinx 1.2.2.

_images/sequence-animation.gif

_images/draw-polyline.gif

_images/seam-liquid.jpg

_images/transform-rotated-90.jpg

_images/seam-crop.jpg
®

Enjoy
>
(W /

CLASSIC

_images/draw-bezier.gif

_images/seam-resize.jpg

_images/draw-circle.gif

_images/draw-push-pop.gif

_static/down-pressed.png

_images/draw-point-math.gif

_images/draw-ellipse-full.gif

_images/composite-channel.jpg

_images/draw-path.gif

_images/composite-channel-result.jpg

_images/transform-flipped.jpg

_images/draw-polygon.gif

_images/caption-result.png
Wand

_images/transform-flopped.jpg

_images/draw-arc.gif

_images/windows-setup.png
Setup - ImageM:

Select Additional Tasks
Vibich additons tasks shod be performed?

elect the aditon tasks you would ke Setup to perform whie instaling ImageMagick
6.7.7Q16, then cick Next.

] Create a desktop icon
[7] Add application drectory to your system path
Assodate supported fle extensions with ImageMagick

sl el headers and s or € and 8
sl perbiagek for ActveStats P vS1412.2buid 1402
Instal InageMagickObiect OLE Control or VBscrp, Vil Basc and WSt

=Tn =N

_images/seam.jpg

_images/draw-ellipse-part.gif

_images/transform-rotated-135.jpg

_images/transform.jpg

_images/sequence-frames.gif
& & B 3 &

