

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Wand

Wand

Wand is a ctypes [http://docs.python.org/library/ctypes.html#ctypes]-based simple ImageMagick [http://www.imagemagick.org/] binding for Python.

from wand.image import Image
from wand.display import display

with Image(filename='mona-lisa.png') as img:
 print(img.size)
 for r in 1, 2, 3:
 with img.clone() as i:
 i.resize(int(i.width * r * 0.25), int(i.height * r * 0.25))
 i.rotate(90 * r)
 i.save(filename='mona-lisa-{0}.png'.format(r))
 display(i)

You can install it from PyPI [https://pypi.python.org/pypi/Wand] (and it requires MagickWand library):

$ apt-get install libmagickwand-dev
$ pip install Wand

Why just another binding?

There are already many MagickWand API bindings for Python, however they
are lacking something we need:

	Pythonic and modern interfaces

	Good documentation

	Binding through ctypes [http://docs.python.org/library/ctypes.html#ctypes] (not C API) — we are ready to go PyPy!

	Installation using pip or easy_install

Requirements

	Python 2.6 or higher
	CPython 2.6 or higher

	CPython 3.2 or higher

	PyPy 1.5 or higher

	MagickWand library
	libmagickwand-dev for APT on Debian/Ubuntu

	imagemagick for MacPorts/Homebrew on Mac

	ImageMagick-devel for Yum on CentOS

User’s guide

	What’s new in Wand 0.3?
	Python 3 support

	Sequence

	Drawing

	EXIF

	Seam carving

	Channels

	Histogram

	Installation
	Install ImageMagick on Debian/Ubuntu

	Install ImageMagick on Fedora/CentOS

	Install ImageMagick on Mac

	Install ImageMagick on Windows

	Install Wand on Debian/Ubuntu

	Install Wand on FreeBSD

	Reading images
	Open an image file

	Read a input stream

	Read a blob

	Clone an image

	Hint file format

	Open an empty image

	Writing images
	Convert images to JPEG

	Save to file

	Save to stream

	Get binary string

	Resizing and cropping
	Resize images

	Crop images

	Transform images

	Seam carving (also known as content-aware resizing)

	Transformation
	Rotation

	Flip and flop

	Drawing
	Lines

	Texts

	Colorspace
	Image types

	Enable alpha channel

	Reading EXIF

	Sequence
	sequence is a Sequence

	Image versus SingleImage

	Resource management

	Running tests
	Skipping tests

	Using tox

	Continuous Integration

	Code Coverage

	Roadmap
	Version 0.4

	Very future versions

	Wand Changelog
	Version 0.3.0

	Version 0.2.4

	Version 0.2.3

	Version 0.2.2

	Version 0.2.1

	Version 0.2.0

	Version 0.1.10

	Version 0.1.9

	Version 0.1.8

	Version 0.1.7

	Version 0.1.6

	Version 0.1.5

	Version 0.1.4

	Version 0.1.3

	Version 0.1.2

	Version 0.1.1

	Version 0.1.0

	Talks and Presentations
	Talks in 2012

References

	wand — Simple MagickWand API binding for Python
	wand.image — Image objects

	wand.color — Colors

	wand.font — Fonts

	wand.drawing — Drawings

	wand.sequence — Sequences

	wand.resource — Global resource management

	wand.exceptions — Errors and warnings

	wand.api — Low-level interfaces

	wand.compat — Compatibility layer

	wand.display — Displaying images

	wand.version — Version data

Troubleshooting

Mailing list

Wand has the list for users. If you want to subscribe the list, just send a
mail to:

wand@librelist.com

The list archive [http://librelist.com/browser/wand/] provided by Librelist [http://librelist.com/] is synchronized every hour.

Quora

There’s a Quora topic for Wand: Wand (ImageMagick binding) [https://www.quora.com/Wand-ImageMagick-binding]. Be free
to add questions to the topic, though it’s suitable for higher-level questions
rather than troubleshooting.

Open source

Wand is an open source software written by Hong Minhee [http://dahlia.kr/] (initially written
for StyleShare [https://stylesha.re/]). See also the complete list of contributors [https://github.com/dahlia/wand/graphs/contributors] as well.
The source code is distributed under MIT license [http://minhee.mit-license.org/] and you can find it at
GitHub repository [https://github.com/dahlia/wand]. Check out now:

$ git clone git://github.com/dahlia/wand.git

If you find a bug, please notify to our issue tracker [https://github.com/dahlia/wand/issues]. Pull requests
are always welcome!

We discuss about Wand’s development on IRC. Come #wand channel on
freenode network.

Check out Wand Changelog also.

[image: Build Status]
 [http://travis-ci.org/dahlia/wand][image: Coverage Status]
 [https://coveralls.io/r/dahlia/wand]

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 What’s new in Wand 0.3?

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

What’s new in Wand 0.3?

This guide doesn’t cover all changes in 0.3. See also the full list of
changes in Version 0.3.0.

Python 3 support

Wand finally becomes to support Python 3, the future of Python. It actually
doesn’t cover all Python 3 versions, but the most two recent versions, 3.2 and
3.3, are supported. We still support Python 2.6, 2.7, and PyPy as well,
so there’s no dropped compatibility.

See also

	Wand now works on Python 3.2 and 3.3 [http://librelist.com/browser/wand/2013/6/6/wand-now-works-on-python-3-2-and-3-3/]

	The announcement about this on the mailing list.

Sequence

Wand now adds supports to sequential images like animated image/gif
images and image/gif images that contains multiple icons.
To distinguish between each single image and the container image,
newly introduced class SingleImage has been added.
The most of operations and properties are commonly available for both types,
Image and SingleImage, and these
are defined by their common superclass, BaseImage.

So every Image object now has sequence attribute which is list-like. It implements
collections.MutableSequence [http://docs.python.org/library/collections.html#collections.MutableSequence] protocol. That means you can pass it
into for [http://docs.python.org/reference/compound_stmts.html#for] statement, get an item by index from it, slice it,
call len() [http://docs.python.org/library/functions.html#len] for it, or del [http://docs.python.org/reference/simple_stmts.html#del] an item of it by index. Every item
inside it is a SingleImage instance.

The following example shows you how to determine the largest icon in
a image/ico file:

>>> from wand.image import Image
>>> import urllib2
>>> with Image(file=urllib2.urlopen('https://github.com/favicon.ico')) as ico:
... max(ico.sequence, key=lambda i: i.width * i.height)
...
<wand.sequence.SingleImage: 80d158d (32x32)>

This feature was initially proposed by Michael Elovskikh (#34 [https://github.com/dahlia/wand/issues/34]),
and then he also did initial work on this (#39 [https://github.com/dahlia/wand/issues/39]). Andrey Antukh
then improved its API (#66 [https://github.com/dahlia/wand/issues/66]). Bear Dong and Taeho Kim did additional
efforts for issues related to animated image/gif images
(#88 [https://github.com/dahlia/wand/issues/88], #103 [https://github.com/dahlia/wand/issues/103], #112 [https://github.com/dahlia/wand/issues/112]).

See also the guide for sequence as well: Sequence.

Drawing

Wand 0.3 provides basic facilities to draw Lines or
Texts.

The following example code writes “Wand” to the transparent background
using caption() method:

>>> from wand.font import Font
>>> font = Font(path='tests/assets/League_Gothic.otf', size=64)
>>> with Image(width=300, height=150) as image:
... image.caption('Wand', left=5, top=5, width=490, height=140, font=font)
... image.save(filename='caption-result.png')
...

[image: caption-result.png]
Adrian Jung and did the most of work for this (#64 [https://github.com/dahlia/wand/issues/64]).
Cha, Hojeong added higher-level APIs on this and more text drawing APIs
(#69 [https://github.com/dahlia/wand/issues/69], #71 [https://github.com/dahlia/wand/issues/71], #74 [https://github.com/dahlia/wand/issues/74]).

EXIF

Wand now can read EXIF metadata from images through metadata property which is a mapping:

>>> from __future__ import print_function
>>> url = 'http://farm9.staticflickr.com/8282/7874109806_3fe0080ae4_o_d.jpg'
>>> with Image(file=urllib2.urlopen(url)) as i:
... for key, value in i.metadata.items():
... if key.startswith('exif:'):
... print(key, value)
...
exif:ApertureValue 8/1
exif:CustomRendered 0
exif:DateTime 2012:08:27 18:42:15
exif:DateTimeDigitized 2012:08:17 02:33:36
exif:DateTimeOriginal 2012:08:17 02:33:36
exif:ExifOffset 204
exif:ExifVersion 48, 50, 50, 49
exif:ExposureBiasValue 0/1
exif:ExposureMode 1
exif:ExposureProgram 1
exif:ExposureTime 1/50
...

Thanks for Michael Elovskikh who worked on this (#25 [https://github.com/dahlia/wand/issues/25], #56 [https://github.com/dahlia/wand/issues/56]).

See also the guide for this as well: Reading EXIF.

Seam carving

ImageMagick optionally provides seam carving [http://en.wikipedia.org/wiki/Seam_carving] (also known as liquid rescaling
or content-aware resizing) through MagickLiquidRescaleImage()
function if it’s properly configured --with-lqr. It makes you able to
magically resize images without distortion.

Wand 0.3 becomes to provide a simple method Image.liquid_rescale() which binds this API.

You can find more detail examples in its guide: Seam carving (also known as content-aware resizing).

Channels

Some channel-related APIs like wand.image.Image.channel_images,
channel_depths, and
composite_channel() are added in Wand 0.3.

The following example makes the overlayed image (second,
composite-channel-result.jpg) from the original image (first,
composite-channel.jpg):

[image: composite-channel.jpg]
[image: composite-channel-result.jpg]
import shutil
import urllib2

from wand.image import Image
from wand.color import Color

url = 'http://farm6.staticflickr.com/5271/5836279075_c3f8226bc1_z.jpg'
with open('composite-channel.jpg', 'wb') as f:
 u = urllib2.urlopen(url)
 shutil.copyfileobj(u, f)
 u.close()

with Image(filename='composite-channel.jpg') as image:
 with Image(background=Color('black'),
 width=image.width,
 height=image.height / 3) as bar:
 image.composite_channel(
 channel='all_channels',
 image=bar,
 operator='overlay',
 left=0,
 top=(image.height- bar.height) / 2
)
 image.save(filename='composite-channel-result.jpg')

Note

The image composite-channel.jpg used in the above example
is taken by Ejja Pahlevi [http://saturatedhigh.tumblr.com/] and licensed under CC-BY-2.0 [http://creativecommons.org/licenses/by/2.0/].
It can be found the original photography from Flickr [http://www.flickr.com/photos/61808613@N06/5836279075/].

Histogram

Every image now has histogram attribute,
which is dictionary-like. Its keys are colors that used once or more in
the image, and values are are the numbers of the pixels.

For example, simply get keys() of
histogram if you need its palette.

>>> url = 'http://farm7.staticflickr.com/6145/5982384872_cb1e01004e_n.jpg'
>>> with Image(file=urllib2.urlopen(url)) as image:
... palette = image.histogram.keys()

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Installation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Installation

Wand itself can be installed from PyPI [http://pypi.python.org/pypi/Wand] using easy_install or
pip:

$ easy_install Wand # or
$ pip install Wand

Wand is a Python binding of ImageMagick [http://www.imagemagick.org/], so you have to install it as well:

	Debian/Ubuntu

	Fedora/CentOS

	Mac

	Windows

Or you can simply install Wand and its entire dependencies using the package
manager of your system (it’s way convenient but the version might be outdated):

	Debian/Ubuntu

	FreeBSD

Install ImageMagick on Debian/Ubuntu

If you’re using Linux distributions based on Debian like Ubuntu, it can be
easily installed using APT:

$ sudo apt-get install libmagickwand-dev

Install ImageMagick on Fedora/CentOS

If you’re using Linux distributions based on Redhat like Fedora or CentOS,
it can be installed using Yum:

$ yum update
$ yum install ImageMagick-devel

Install ImageMagick on Mac

You need one of Homebrew [http://mxcl.github.com/homebrew/] or MacPorts [http://www.macports.org/] to install ImageMagick.

	Homebrew

	$ brew install imagemagick

	MacPorts

	$ sudo port install imagemagick

If your Python in not installed using MacPorts, you have to export
MAGICK_HOME path as well. Because Python that is not installed
using MacPorts doesn’t look up /opt/local, the default path prefix
of MacPorts packages.

$ export MAGICK_HOME=/opt/local

Install ImageMagick on Windows

You could build ImageMagick by yourself, but it requires a build tool chain
like Visual Studio to compile it. The easiest way is simply downloading
a prebuilt binary of ImageMagick for your architecture (win32 or
win64).

You can download it from the following link:

http://www.imagemagick.org/download/binaries/

Choose a binary for your architecture:

	Windows 32-bit

	ImageMagick-6.7.7-6-Q16-windows-dll.exe [http://www.imagemagick.org/download/binaries/ImageMagick-6.7.7-6-Q16-windows-dll.exe]

	Windows 64-bit

	ImageMagick-6.7.7-6-Q16-windows-x64-dll.exe [http://www.imagemagick.org/download/binaries/ImageMagick-6.7.7-6-Q16-windows-x64-dll.exe]

[image: ../_images/windows-setup.png]
Note that you have to check Install development headers and
libraries for C and C++ to make Wand able to link to it.

[image: ../_images/windows-envvar.png]
Lastly you have to set MAGICK_HOME environment variable to the path
of ImageMagick (e.g. C:\Program Files\ImageMagick-6.7.7-Q16).
You can set it in Computer ‣ Properties ‣
Advanced system settings ‣ Advanced ‣ Environment Variables....

Install Wand on Debian/Ubuntu

Wand itself is already packaged in Debian/Ubuntu APT repository: python-wand [http://packages.debian.org/sid/python-wand].
You can install it using apt-get command:

$ sudo apt-get install python-wand

Install Wand on FreeBSD

Wand itself is already packaged in FreeBSD ports collection: py-wand [http://www.freebsd.org/cgi/cvsweb.cgi/ports/graphics/py-wand/].
You can install it using pkg_add command:

$ pkg_add -r py-wand

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Reading images

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Reading images

There are several ways to open images:

	To open an image file

	To read a input stream (file-like object) that provides an image binary

	To read a binary string that contains image

	To copy an existing image object

	To open an empty image

All of these operations are provided by the constructor of
Image class.

Open an image file

The most frequently used way is just to open an image by its filename.
Image‘s constructor can take the parameter named
filename:

from __future__ import print_function
from wand.image import Image

with Image(filename='pikachu.png') as img:
 print('width =', img.width)
 print('height =', img.height)

Note

It must be passed by keyword argument exactly. Because the constructor
has many parameters that are exclusive to each other.

There is a keyword argument named file as well, but don’t confuse
it with filename. While filename takes a string of a filename,
file takes a input stream (file-like object).

Read a input stream

If an image to open cannot be located by a filename but can be read through
input stream interface (e.g. opened by os.popen() [http://docs.python.org/library/os.html#os.popen],
contained in StringIO [http://docs.python.org/library/stringio.html#StringIO.StringIO], read by urllib2.urlopen() [http://docs.python.org/library/urllib2.html#urllib2.urlopen]),
it can be read by Image constructor’s file parameter.
It takes all file-like objects which implements read() [http://docs.python.org/library/stdtypes.html#file.read] method:

from __future__ import print_function
from urllib2 import urlopen
from wand.image import Image

response = urlopen('https://stylesha.re/minhee/29998/images/100x100')
try:
 with Image(file=response) as img:
 print('format =', img.format)
 print('size =', img.size)
finally:
 response.close()

In the above example code, response object returned by
urlopen() [http://docs.python.org/library/urllib2.html#urllib2.urlopen] function has read() [http://docs.python.org/library/stdtypes.html#file.read] method,
so it also can be used as an input stream for a downloaded image.

Read a blob

If you have just a binary string (str) of the image, you can pass
it into Image constructor’s blob parameter to read:

from __future__ import print_function
from wand.image import Image

with open('pikachu.png') as f:
 image_binary = f.read()

with Image(blob=image_binary) as img:
 print('width =', img.width)
 print('height =', img.height)

It is a way of the lowest level to read an image. There will probably not be
many cases to use it.

Clone an image

If you have an image already and have to copy it for safe manipulation,
use clone() method:

from wand.image import Image

with Image(filename='pikachu.png') as original:
 with original.clone() as converted:
 converted.format = 'png'
 # operations on a converted image...

For some operations like format converting or cropping, there are safe methods
that return a new image of manipulated result like
convert() or slicing operator. So the above example
code can be replaced by:

from wand.image import Image

with Image(filename='pikachu.png') as original:
 with original.convert('png') as converted:
 # operations on a converted image...

Hint file format

When it’s read from a binary string or a file object, you can explicitly
give the hint which indicates file format of an image to read — optional
format keyword is for that:

from wand.image import Image

with Image(blob=image_binary, format='ico') as image:
 print(image.format)

New in version 0.2.1: The format parameter to Image constructor.

Open an empty image

To open an empty image, you have to set its width and height:

from wand.image import Image

with Image(width=200, height=100) as img:
 img.save(filename='200x100-transparent.png')

Its background color will be transparent by default. You can set background
argument as well:

from wand.color import Color
from wand.image import Image

with Color('red') as bg:
 with Image(width=200, height=100, background=bg) as img:
 img.save(filename='200x100-red.png')

New in version 0.2.2: The width, height, and background parameters to
Image constructor.

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Writing images

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Writing images

You can write an Image object into a file or a byte
string buffer (blob) as format what you want.

Convert images to JPEG

If you wonder what is image’s format, use format
property.

>>> image.format
'JPEG'

The format property is writable, so you can convert
images by setting this property.

from wand.image import Image

with Image(filename='pikachu.png') as img:
 img.format = 'jpeg'
 # operations to a jpeg image...

If you want to convert an image without any changes of the original,
use convert() method instead:

from wand.image import Image

with Image(filename='pikachu.png') as original:
 with original.convert('jpeg') as converted:
 # operations to a jpeg image...
 pass

Note

Support for some of the formats are delegated to libraries or external
programs. To get a complete listing of which image formats are supported
on your system, use identify command provided by ImageMagick:

$ identify -list format

Save to file

In order to save an image to a file, use save()
method with the keyword argument filename:

from wand.image import Image

with Image(filename='pikachu.png') as img:
 img.format = 'jpeg'
 img.save(filename='pikachu.jpg')

Save to stream

You can write an image into a output stream (file-like object which implements
write() [http://docs.python.org/library/stdtypes.html#file.write] method) as well. The parameter file takes a such
object (it also is the first positional parameter of
save() method).

For example, the following code converts pikachu.png image into
JPEG, gzips it, and then saves it to pikachu.jpg.gz:

import gzip
from wand.image import Image

gz = gzip.open('pikachu.jpg.gz')
with Image(filename='pikachu.png') as img:
 img.format = 'jpeg'
 img.save(file=gz)
gz.close()

Get binary string

Want just a binary string of the image? Use
make_blob() method so:

from wand.image import Image

with image(filename='pikachu.png') as img:
 img.format = 'jpeg'
 jpeg_bin = img.make_blob()

There’s the optional format parameter as well. So the above example code
can be simpler:

from wand.image import Image

with Image(filename='pikachu.png') as img:
 jpeg_bin = img.make_blob('jpeg')

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Resizing and cropping

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Resizing and cropping

Creating thumbnails (by resizing images) and cropping are most frequent works
about images. This guide explains ways to deal with sizes of images.

Above all, to get the current size of the image check
width and height
properties:

>>> from urllib2 import urlopen
>>> from wand.image import Image
>>> f = urlopen('http://api.twitter.com/1/users/profile_image/hongminhee')
>>> with Image(file=f) as img:
... width = img.width
... height = img.height
...
>>> f.close()
>>> width
48
>>> height
48

If you want the pair of (width,
height), check size
property also.

Note

These three properties are all readonly.

Resize images

It scales an image into a desired size even if the desired size is larger
than the original size. ImageMagick provides so many algorithms for resizing.
The constant FILTER_TYPES contains names of filtering
algorithms.

See also

	ImageMagick Resize Filters [http://www.dylanbeattie.net/magick/filters/result.html]

	Demonstrates the results of resampling three images using the various
resize filters and blur settings available in ImageMagick,
and the file size of the resulting thumbnail images.

Image.resize() method takes width
and height of a desired size, optional filter ('undefined' by
default which means IM will try to guess best one to use) and optional
blur (default is 1). It returns nothing but resizes itself in-place.

>>> img.size
(500, 600)
>>> img.resize(50, 60)
>>> img.size
(50, 60)

Crop images

To extract a sub-rectangle from an image, use the
crop() method. It crops the image in-place.
Its parameters are left, top, right, bottom in order.

>>> img.size
(200, 300)
>>> img.crop(10, 20, 50, 100)
>>> img.size
(40, 80)

It can also take keyword arguments width and height. These parameters
replace right and bottom.

>>> img.size
(200, 300)
>>> img.crop(10, 20, width=40, height=80)
>>> img.size
(40, 80)

There is an another way to crop images: slicing operator. You can crop
an image by [left:right, top:bottom] with maintaining the original:

>>> img.size
(300, 300)
>>> with img[10:50, 20:100] as cropped:
... print(cropped.size)
...
(40, 80)
>>> img.size
(300, 300)

Transform images

Use this function to crop and resize and image at the same time,
using ImageMagick geometry strings. Cropping is performed first,
followed by resizing.

For example, if you want to crop your image to 300x300 pixels
and then scale it by 2x for a final size of 600x600 pixels,
you can call:

img.transform('300x300', '200%')

Other example calls:

crop top left corner
img.transform('50%')

scale height to 100px and preserve aspect ratio
img.transform(resize='x100')

if larger than 640x480, fit within box, preserving aspect ratio
img.transform(resize='640x480>')

crop a 320x320 square starting at 160x160 from the top left
img.transform(crop='320+160+160')

See also

	ImageMagick Geometry Specifications [http://www.imagemagick.org/script/command-line-processing.php#geometry]

	Cropping and resizing geometry for the transform method are
specified according to ImageMagick’s geometry string format.
The ImageMagick documentation provides more information about
geometry strings.

Seam carving (also known as content-aware resizing)

New in version 0.3.0.

Seam carving [http://en.wikipedia.org/wiki/Seam_carving] is an algorithm for image resizing that functions by
establishing a number of seams (paths of least importance) in an image
and automatically removes seams to reduce image size or inserts seams
to extend it.

In short: you can magickally resize images without distortion!
See the following examples:

	Original
	Resized

	[image: seam.jpg]

	[image: seam-resize.jpg]

	Cropped
	Seam carving

	[image: seam-crop.jpg]

	[image: seam-liquid.jpg]

You can easily rescale images with seam carving using Wand:
use Image.liquid_rescale()
method:

>>> image = Image(filename='seam.jpg')
>>> image.size
(320, 234)
>>> with image.clone() as resize:
... resize.resize(234, 234)
... resize.save(filename='seam-resize.jpg')
... resize.size
...
(234, 234)
>>> with image[:234, :] as crop:
... crop.save(filename='seam-crop.jpg')
... crop.size
...
(234, 234)
>>> with image.clone() as liquid:
... liquid.liquid_rescale(234, 234)
... liquid.save(filename='seam-liquid.jpg')
... liquid.size
...
(234, 234)

Note

It may raise MissingDelegateError if your
ImageMagick is configured --without-lqr option. In this case
you should recompile ImageMagick.

See also

	Seam carving [http://en.wikipedia.org/wiki/Seam_carving] — Wikipedia

	The article which explains what seam carving is on Wikipedia.

Note

The image seam.jpg used in the above example is taken by
D. Sharon Pruitt [http://www.pinksherbet.com/] and licensed under CC-BY-2.0 [http://creativecommons.org/licenses/by/2.0/].
It can be found the original photography from Flickr [http://www.flickr.com/photos/pinksherbet/2443468531/].

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Transformation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Transformation

Note

The image transform.jpg used in this docs is taken by
Megan Trace [http://megantracephoto.tumblr.com/], and licensed under CC BY-NC 2.0 [http://creativecommons.org/licenses/by-nc/2.0/deed.en].
It can be found the original photography from Flickr [http://www.flickr.com/photos/megantrace/6234830561/].

Rotation

New in version 0.1.8.

Image object provides a simple method to rotate images:
rotate(). It takes a degree which can be 0
to 359. (Actually you can pass 360, 361, or more but it will be the same to
0, 1, or more respectively.)

For example, where the given image transform.jpg:

[image: transform.jpg]
The below code makes the image rotated 90° to right:

from wand.image import Image

with Image(filename='transform.jpg') as image:
 with image.clone() as rotated:
 rotated.rotate(90)
 rotated.save(filename='transform-rotated-90.jpg')

The generated image transform-rotated-90.jpg looks like:

[image: transform-rotated-90.jpg]
If degree is not multiples of 90, the optional parameter background
will help (its default is transparent):

from wand.color import Color
from wand.image import Image

with Image(filename='transform.jpg') as image:
 with image.clone() as rotated:
 rotated.rotate(135, background=Color('rgb(229,221,112)'))
 rotated.save(filename='transform-rotated-135.jpg')

The generated image transform-rotated-135.jpg looks like:

[image: transform-rotated-135.jpg]

Flip and flop

New in version 0.3.0.

You can make a mirror image by reflecting the pixels around the central
x- or y-axis. For example, where the given image transform.jpg:

[image: transform.jpg]
The following code flips the image using Image.flip() method:

from wand.image import Image

with Image(filename='transform.jpg') as image:
 with image.clone() as flipped:
 flipped.flip()
 flipped.save(filename='transform-flipped.jpg')

The image transform-flipped.jpg generated by the above code looks like:

[image: transform-flipped.jpg]
As like flip(),
flop() does the same thing except it doesn’t
make a vertical mirror image but horizontal:

from wand.image import Image

with Image(filename='transform.jpg') as image:
 with image.clone() as flopped:
 flopped.flop()
 flopped.save(filename='transform-flopped.jpg')

The image transform-flopped.jpg generated by the above code looks like:

[image: transform-flopped.jpg]

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Drawing

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Drawing

New in version 0.3.0.

The wand.drawing module provides some basic drawing functions.
wand.drawing.Drawing object buffers instructions for drawing
shapes into images, and then it can draw these shapes into zero or more
images.

It’s also callable and takes an Image object:

from wand.drawing import Drawing
from wand.image import Image

with Drawing() as draw:
 # does something with ``draw`` object,
 # and then...
 with Image(filename='wandtests/assets/beach.jpg') as image:
 draw(image)

Lines

You can draw lines using line() method.
It simply takes two (x, y) coordinates for start and end of a line.
For example, the following code draws a diagonal line into the image:

draw.line((0, 0), image.size)
draw(image)

Or you can turn this diagonal line upside down:

draw.line((0, image.height), (image.width, 0))
draw(image)

The line color is determined by fill_color
property, and you can change this of course. The following code draws
a red diagonal line into the image:

from wand.color import Color

with Color('red') as color:
 draw.fill_color = color
 draw.line((0, 0), image.size)
 draw(image)

Texts

Drawing object can write texts as well using its
text() method. It takes x and y
cordinates to be drawn and a string to write:

draw.font = 'wandtests/assets/League_Gothic.otf'
draw.font_size = 40
draw.text(image.width / 2, image.height / 2, 'Hello, world!')
draw(image)

As the above code shows you can adjust several settings before writing texts:

	font

	font_size

	gravity

	text_alignment

	text_antialias

	text_decoration

	text_interline_spacing

	text_interword_spacing

	text_kerning

	text_under_color

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Colorspace

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Colorspace

Image types

Every Image object has type
property which identifies its colorspace. The value can be one of
IMAGE_TYPES enumeration, and set of its available
values depends on its format as well. For example,
'grayscale' isn’t available on JPEG.

>>> from wand.image import Image
>>> with Image(filename='wandtests/assets/bilevel.gif') as img:
... img.type
...
'bilevel'
>>> with Image(filename='wandtests/assets/sasha.jpg') as img2:
... img2.type
...
'truecolor'

You can change this value:

with Image(filename='wandtests/assets/bilevel.gif') as img:
 img.type = 'truecolor'
 img.save(filename='truecolor.gif')

See also

	-type [http://www.imagemagick.org/script/command-line-options.php#type] — ImageMagick: command-line-Options

	Corresponding command-line option of convert program.

Enable alpha channel

You can find whether an image has alpha channel and change it to have or
not to have the alpha channel using alpha_channel
property, which is preserving a bool value.

>>> with Image(filename='wandtests/assets/sasha.jpg') as img:
... img.alpha_channel
...
False
>>> with Image(filename='wandtests/assets/croptest.png') as img:
... img.alpha_channel
...
True

It’s a writable property:

with Image(filename='wandtests/assets/sasha.jpg') as img:
 img.alpha_channel = True

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Reading EXIF

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Reading EXIF

New in version 0.3.0.

Image.metadata contains metadata
of the image including EXIF. These are prefixed by 'exif:'
e.g. 'exif:ExifVersion', 'exif:Flash'.

Here’s a straightforward example to access EXIF of an image:

exif = {}
with Image(filename='wandtests/assets/beach.jpg') as image:
 exif.update((k[5:], v) for k, v in image.metadata.items()
 if k.startswith('exif:'))

Note

You can’t write into Image.metadata.

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Sequence

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Sequence

Note

The image sequence-animation.gif used in this docs
has been released into the public domain by its author,
C6541 [http://en.wikipedia.org/wiki/User:C6541] at Wikipedia [http://en.wikipedia.org/wiki/] project. This applies worldwide. (Source [http://commons.wikimedia.org/wiki/File:1.3-B.gif])

New in version 0.3.0.

Some images may actually consist of two or more images. For example,
animated image/gif images consist of multiple frames.
Some image/ico images have different sizes of icons.

[image: sequence-animation.gif]
For example, the above image sequence-animation.gif consists
of the following frames (actually it has 60 frames, but we sample only
few frames to show here):

[image: frames of sequence-animation.gif]

sequence is a Sequence [http://docs.python.org/library/collections.html#collections.Sequence]

If we open this image, Image object
has sequence. It’s a list-like object
that maintain its all frames.

For example, len() [http://docs.python.org/library/functions.html#len] for this returns the number of frames:

>>> from wand.image import Image
>>> with Image(filename='sequence-animation.gif') as image:
... len(image.sequence)
...
60

You can get an item by index from sequence:

>>> with Image(filename='sequence-animation.gif') as image:
... image.sequence[0]
...
<wand.sequence.SingleImage: ed84c1b (256x256)>

Or slice it:

>>> with Image(filename='sequence-animation.gif') as image:
... image.sequence[5:10]
...
[<wand.sequence.SingleImage: 0f49491 (256x256)>,
 <wand.sequence.SingleImage: 8eba0a5 (256x256)>,
 <wand.sequence.SingleImage: 98c10fa (256x256)>,
 <wand.sequence.SingleImage: b893194 (256x256)>,
 <wand.sequence.SingleImage: 181ce21 (256x256)>]

Image versus SingleImage

Note that each item of sequence is a
SingleImage instance, not Image.

Image is a container that directly represents
image files like sequence-animation.gif, and
SingleImage is a single image that represents
frames in animations or sizes in image/ico files.

They both inherit BaseImage, the common abstract class.
They share the most of available operations and properties like
resize() and size,
but some are not. For example, save() and
mimetype are only provided by
Image. delay and
index are only available for
SingleImage.

In most cases, images don’t have multiple images, so it’s okay if you think
that Image and SingleImage are
the same, but be careful when you deal with animated image/gif
files or image/ico files that contain multiple icons.

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Resource management

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Resource management

See also

	wand.resource — Global resource management

	There is the global resource to manage in MagickWand API.
This module implements automatic global resource management through
reference counting.

Objects Wand provides are resources to be managed. It has to be closed
(destroyed) after using like file or database connection. You can deal
with it using with [http://docs.python.org/reference/compound_stmts.html#with] very easily and explicitly:

with Image(filename='') as img:
 # deal with img...

Or you can call its destroy() (or
close() if it is an Image
instance) method manually:

try:
 img = Image(filename='')
 # deal with img...
finally:
 img.destroy()

Note

It also implements the destructor that invokes
destroy(), and if your program runs on
CPython (which does reference counting instead of ordinary garbage
collection) most of resources are automatically deallocated.

However it’s just depending on CPython’s implementation detail of
memory management, so it’s not a good idea. If your program
runs on PyPy (which implements garbage collector) for example,
invocation time of destructors is not determined, so the program
would be broken.

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Running tests

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Running tests

Wand has unit tests and regression tests. It can be run using
setup.py script:

$ python setup.py test

It uses pytest [http://pytest.org/] as its testing library. The above command will automatically
install pytest as well if it’s not installed yet.

Or you can manually install pytest and then use py.test command.
It provides more options:

$ pip install pytest
$ py.test

Skipping tests

There are some time-consuming tests. You can skip these tests using
--skip-slow option:

$ py.test --skip-slow

You can run only tests you want using -k option.

$ py.test -k image

Using tox [http://tox.testrun.org/]

Wand should be compatible with various Python implementations including
CPython 2.6, 2.7, PyPy. tox [http://tox.testrun.org/] is a testing software that helps Python
packages to test on various Python implementations at a time.

It can be installed using easy_install or pip:

$ easy_install tox

If you type just tox at Wand directory it will be tested
on multiple Python interpreters:

$ tox
GLOB sdist-make: /Users/dahlia/Desktop/wand/setup.py
py26 create: /Users/dahlia/Desktop/wand/.tox/py26
py26 installdeps: pytest
py26 sdist-inst: /Users/dahlia/Desktop/wand/.tox/dist/Wand-0.2.2.zip
py26 runtests: commands[0]
...

You can use a double -- to pass options to pytest:

$ tox -- -k sequence

Continuous Integration

[image: Build Status]
 [http://travis-ci.org/dahlia/wand]Travis CI [http://travis-ci.org/] automatically builds and tests every commit and pull request.
The above banner image shows the current status of Wand build.
You can see the detail of the current status from the following URL:

http://travis-ci.org/dahlia/wand

Code Coverage

[image: Coverage Status]
 [https://coveralls.io/r/dahlia/wand]Coveralls [https://coveralls.io/] support tracking Wand’s test coverage. The above banner image
shows the current status of Wand coverage. You can see the details of the
current status from the following URL:

https://coveralls.io/r/dahlia/wand

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Roadmap

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Roadmap

Version 0.4

	CFFI

	Wand 0.4 will move to CFFI from ctypes.

	Image layers (#22 [https://github.com/dahlia/wand/issues/22])

	Wand 0.4 will be able to deal with layers of an image.

Its branch name will be layer [https://github.com/dahlia/wand/compare/master...layer].

Very future versions

	PIL compatibility layer

	PIL has very long history and the most of Python projects still
depend on it. We will work on PIL compatiblity layer using Wand.
It will provide two ways to emulate PIL:

	Module-level compatibility which can be used by changing
import [http://docs.python.org/reference/simple_stmts.html#import]:

try:
 from wand.pilcompat import Image
except ImportError:
 from PIL import Image

	Global monkeypatcher which changes sys.modules:

from wand.pilcompat.monkey import patch; patch()
import PIL.Image # it imports wand.pilcompat.Image module

	CLI (covert command) to Wand compiler (#100 [https://github.com/dahlia/wand/issues/100])

	Primary interface of ImageMagick is convert command.
It provides a small parameter language, and many answers on the Web
contain code using this. The problem is that you can’t simply
copy-and-paste these code to utilize Wand.

This feature is to make these CLI codes possible to be used with Wand.

	Supporting __array_interface__() for NumPy (#65 [https://github.com/dahlia/wand/issues/65])

	It makes numpy.asarray() able to take Image
object to deal with its pixels as matrix.

Its branch name will be numpy [https://github.com/dahlia/wand/compare/master...numpy].

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Wand Changelog

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Wand Changelog

Version 0.3.0

Released on June 17, 2013.

See also

	What’s new in Wand 0.3?

	This guide introduces what’s new in Wand 0.3.

	Now also works on Python 2.6, 2.7, and 3.2 or higher.

	Added wand.drawing module. [#64 [https://github.com/dahlia/wand/issues/64] by Adrian Jung]

	Added Drawing.get_font_metrics() method.
[#69 [https://github.com/dahlia/wand/issues/69], #71 [https://github.com/dahlia/wand/issues/71] by Cha, Hojeong]

	Added Image.caption() method.
[#74 [https://github.com/dahlia/wand/issues/74] by Cha, Hojeong]

	Added optional color parameter to Image.trim() method.

	Added Image.border() method.
[2496d37f75d75e9425f95dde07033217dc8afefc [https://github.com/dahlia/wand/commit/2496d37f75d75e9425f95dde07033217dc8afefc] by Jae-Myoung Yu]

	Added resolution parameter to Image.read()
method and the constructor of Image.
[#75 [https://github.com/dahlia/wand/issues/75] by Andrey Antukh]

	Added Image.liquid_rescale()
method which does seam carving [http://en.wikipedia.org/wiki/Seam_carving]. See also Seam carving (also known as content-aware resizing).

	Added Image.metadata immutable mapping
attribute and Metadata mapping type for it.
[#56 [https://github.com/dahlia/wand/issues/56] by Michael Elovskikh]

	Added Image.channel_images
immutable mapping attribute and ChannelImageDict
mapping for it.

	Added Image.channel_depths
immutable mapping attribute and ChannelDepthDict
mapping for it.

	Added Image.composite_channel() method.

	Added Image.read() method.
[#58 [https://github.com/dahlia/wand/issues/58] by Piotr Florczyk]

	Added Image.resolution property.
[#58 [https://github.com/dahlia/wand/issues/58] by Piotr Florczyk]

	Added Image.blank() method.
[#60 [https://github.com/dahlia/wand/issues/60] by Piotr Florczyk]

	Fixed several memory leaks. [#62 [https://github.com/dahlia/wand/issues/62] by Mitch Lindgren]

	Added ImageProperty mixin class to maintain
a weak reference to the parent image.

	Ranamed wand.image.COMPOSITE_OPS to
COMPOSITE_OPERATORS.

	Now it shows helpful error message when ImageMagick library cannot be
found.

	Added IPython-specialized formatter.

	Added QUANTUM_DEPTH constant.

	Added these properties to Color class:
	red_quantum

	green_quantum

	blue_quantum

	alpha_quantum

	red_int8

	green_int8

	blue_int8

	alpha_int8

	Added Image.normalize() method.
[#95 [https://github.com/dahlia/wand/issues/95] by Michael Curry]

	Added Image.transparent_color() method.
[#98 [https://github.com/dahlia/wand/issues/98] by Lionel Koenig]

	Started supporting resizing and cropping of GIF images.
[#88 [https://github.com/dahlia/wand/issues/88] by Bear Dong, #112 [https://github.com/dahlia/wand/issues/112] by Taeho Kim]

	Added Image.flip() method.

	Added Image.flop() method.

	Added Image.orientation property.
[88574468a38015669dae903185fb328abdd717c0 [https://github.com/dahlia/wand/commit/88574468a38015669dae903185fb328abdd717c0] by Taeho Kim]

	wand.resource.DestroyedResourceError becomes a subtype of
wand.exceptions.WandException.

	Color is now hashable, so can be used as a key of
dictionaries, or an element of sets. [#114 [https://github.com/dahlia/wand/issues/114] by klutzy]

	Color has normalized_string
property.

	Image has histogram
dictionary.

	Added optional fuzz parameter to Image.trim() method. [#113 [https://github.com/dahlia/wand/issues/113] by Evaldo Junior]

Version 0.2.4

Released on May 28, 2013.

	Fix NameError [http://docs.python.org/library/exceptions.html#exceptions.NameError] in Resource.resource setter.
[#89 [https://github.com/dahlia/wand/issues/89] forwareded from Debian bug report #699064 [http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=699064]
by Jakub Wilk]

	Fix the problem of library loading for Mac with Homebrew and Arch Linux.
[#102 [https://github.com/dahlia/wand/issues/102] by Roel Gerrits, #44 [https://github.com/dahlia/wand/issues/44]]

Version 0.2.3

Released on January 25, 2013.

	Fixed a bug that Image.transparentize() method (and Image.watermark() method which internally uses it) didn’t
work.

	Fixed segmentation fault occured when Color.red, Color.green,
or Color.blue is accessed.

	Added Color.alpha property.

	Fixed a bug that format converting using Image.format property or Image.convert() method doesn’t correctly work
to save blob.

Version 0.2.2

Released on September 24, 2012.

	A compatibility fix for FreeBSD.
[Patch [http://olivier-freebsd-ports.googlecode.com/hg-history/efb852a5572/graphics/py-wand/files/patch-wand_api.py] by Olivier Duchateau]

	Now Image can be instantiated without any opening.
Instead, it can take width/height and background.
[#53 [https://github.com/dahlia/wand/issues/53] by Michael Elovskikh]

	Added Image.transform() method
which is a convenience method accepting geometry strings to perform
cropping and resizing.
[#50 [https://github.com/dahlia/wand/issues/50] by Mitch Lindgren]

	Added Image.units property.
[#45 [https://github.com/dahlia/wand/issues/45] by Piotr Florczyk]

	Now Image.resize() method raises
a proper error when it fails for any reason.
[#41 [https://github.com/dahlia/wand/issues/41] by Piotr Florczyk]

	Added Image.type property.
[#33 [https://github.com/dahlia/wand/issues/33] by Yauhen Yakimovich, #42 [https://github.com/dahlia/wand/issues/42] by Piotr Florczyk]

Version 0.2.1

Released on August 19, 2012. Beta version.

	Added Image.trim() method.
[#26 [https://github.com/dahlia/wand/issues/26] by Jökull Sólberg Auðunsson]

	Added Image.depth property.
[#31 [https://github.com/dahlia/wand/issues/31] by Piotr Florczyk]

	Now Image can take an optional format hint.
[#32 [https://github.com/dahlia/wand/issues/32] by Michael Elovskikh]

	Added Image.alpha_channel
property. [#35 [https://github.com/dahlia/wand/issues/35] by Piotr Florczyk]

	The default value of Image.resize()‘s
filter option has changed from 'triangle' to 'undefined'.
[#37 [https://github.com/dahlia/wand/issues/37] by Piotr Florczyk]

	Added version data of the linked ImageMagick library into wand.version
module:
	MAGICK_VERSION (GetMagickVersion())

	MAGICK_VERSION_INFO (GetMagickVersion())

	MAGICK_VERSION_NUMBER (GetMagickVersion())

	MAGICK_RELEASE_DATE (GetMagickReleaseDate())

	MAGICK_RELEASE_DATE_STRING
(GetMagickReleaseDate())

Version 0.2.0

Released on June 20, 2012. Alpha version.

	Added Image.transparentize() method.
[#19 [https://github.com/dahlia/wand/issues/19] by Jeremy Axmacher]

	Added Image.composite() method.
[#19 [https://github.com/dahlia/wand/issues/19] by Jeremy Axmacher]

	Added Image.watermark() method.
[#19 [https://github.com/dahlia/wand/issues/19] by Jeremy Axmacher]

	Added Image.quantum_range property.
[#19 [https://github.com/dahlia/wand/issues/19] by Jeremy Axmacher]

	Added Image.reset_coords() method
and reset_coords option to Image.rotate() method. [#20 [https://github.com/dahlia/wand/issues/20] by Juan Pablo Scaletti]

	Added Image.strip() method.
[#23 [https://github.com/dahlia/wand/issues/23] by Dmitry Vukolov]

	Added Image.compression_quality
property. [#23 [https://github.com/dahlia/wand/issues/23] by Dmitry Vukolov]

	Now the current version can be found from the command line interface:
python -m wand.version.

Version 0.1.10

Released on May 8, 2012. Still alpha version.

	So many Windows compatibility issues are fixed. [#14 [https://github.com/dahlia/wand/issues/14] by John Simon]

	Added wand.api.libmagick.

	Fixed a bug that raises AttributeError [http://docs.python.org/library/exceptions.html#exceptions.AttributeError] when it’s trying
to warn. [#16 [https://github.com/dahlia/wand/issues/16] by Tim Dettrick]

	Now it throws ImportError [http://docs.python.org/library/exceptions.html#exceptions.ImportError] instead of
AttributeError [http://docs.python.org/library/exceptions.html#exceptions.AttributeError] when the shared library fails
to load. [#17 [https://github.com/dahlia/wand/issues/17] by Kieran Spear]

	Fixed the example usage on index page of the documentation.
[#18 [https://github.com/dahlia/wand/issues/18] by Jeremy Axmacher]

Version 0.1.9

Released on December 23, 2011. Still alpha version.

	Now wand.version.VERSION_INFO becomes tuple and
wand.version.VERSION becomes a string.

	Added Image.background_color
property.

	Added == operator for Image type.

	Added hash() [http://docs.python.org/library/functions.html#hash] support of Image type.

	Added Image.signature property.

	Added wand.display module.

	Changed the theme of Sphinx documentation.

	Changed the start example of the documentation.

Version 0.1.8

Released on December 2, 2011. Still alpha version.

	Wrote some guide documentations: Reading images, Writing images and
Resizing and cropping.

	Added Image.rotate() method for in-place
rotation.

	Made Image.crop() to raise proper
ValueError instead of IndexError for invalid width/height
arguments.

	Changed the type of Image.resize()
method’s blur parameter from numbers.Rational [http://docs.python.org/library/numbers.html#numbers.Rational] to
numbers.Real [http://docs.python.org/library/numbers.html#numbers.Real].

	Fixed a bug of raising ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError] when invalid filter
has passed to Image.resize() method.

Version 0.1.7

Released on November 10, 2011. Still alpha version.

	Added Image.mimetype property.

	Added Image.crop() method for in-place
crop.

Version 0.1.6

Released on October 31, 2011. Still alpha version.

	Removed a side effect of Image.make_blob() method that changes the image format silently.

	Added Image.format property.

	Added Image.convert() method.

	Fixed a bug about Python 2.6 compatibility.

	Use the internal representation of PixelWand instead of
the string representaion for Color type.

Version 0.1.5

Released on October 28, 2011. Slightly mature alpha version.

	Now Image can read Python file objects by file
keyword argument.

	Now Image.save() method can write into
Python file objects by file keyword argument.

	Image.make_blob()‘s format
argument becomes omittable.

Version 0.1.4

Released on October 27, 2011. Hotfix of the malformed Python package.

Version 0.1.3

Released on October 27, 2011. Slightly mature alpha version.

	Pixel getter for Image.

	Row getter for Image.

	Mac compatibility.

	Windows compatibility.

	64-bit processor compatibility.

Version 0.1.2

Released on October 16, 2011. Still alpha version.

	Image implements iterable interface.

	Added wand.color module.

	Added the abstract base class of all Wand resource objects:
wand.resource.Resource.

	Image implements slicing.

	Cropping Image using its slicing operator.

Version 0.1.1

Released on October 4, 2011. Still alpha version.

	Now it handles errors and warnings properly and in natural way of Python.

	Added Image.make_blob() method.

	Added blob parameter into Image constructor.

	Added Image.resize() method.

	Added Image.save() method.

	Added Image.clone() method.

	Drawed the pretty logo picture
(thanks to Hyojin Choi [http://me2day.net/crocodile]).

Version 0.1.0

Released on October 1, 2011. Very alpha version.

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 Talks and Presentations

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

Talks and Presentations

Talks in 2012

	Lightning talk at Python Korea November 2012 [http://j.mp/pykr2012-wand]

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 wand — Simple MagickWand API binding for Python

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

wand — Simple MagickWand API [http://www.imagemagick.org/script/magick-wand.php] binding for Python

	wand.image — Image objects

	wand.color — Colors

	wand.font — Fonts

	wand.drawing — Drawings

	wand.sequence — Sequences

	wand.resource — Global resource management

	wand.exceptions — Errors and warnings

	wand.api — Low-level interfaces

	wand.compat — Compatibility layer

	wand.display — Displaying images

	wand.version — Version data

 Copyright 2013, Hong Minhee.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	sequence

 	latest

 	drawing

 	0.3-maintenance

 	0.2-maintenance

 	0.3.0

 wand.image — Image objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Wand

 	wand — Simple MagickWand API binding for Python

wand.image — Image objects

Opens and manipulates images. Image objects can be used in with [http://docs.python.org/reference/compound_stmts.html#with]
statement, and these resources will be automatically managed (even if any
error happened):

with Image(filename='pikachu.png') as i:
 print('width =', i.width)
 print('height =', i.height)

	
wand.image.ALPHA_CHANNEL_TYPES = ('undefined', 'activate', 'background', 'copy', 'deactivate', 'extract', 'opaque', 'reset', 'set', 'shape', 'transparent', 'flatten', 'remove')

	(tuple) The list of alpha channel types

	'undefined'

	'activate'

	'background'

	'copy'

	'deactivate'

	'extract'

	'opaque'

	'reset'

	'set'

	'shape'

	'transparent'

	'flatten'

	'remove'

See also

ImageMagick Image Channel [http://www.imagemagick.org/api/channel.php#SetImageAlphaChannel]
 Describes the SetImageAlphaChannel method which can be used
 to modify alpha channel. Also describes AlphaChannelType

	
wand.image.CHANNELS = {'opacity': 8, 'true_alpha': 64, 'gray': 1, 'rgb_channels': 128, 'yellow': 4, 'sync_channels': 256, 'default_channels': 134217719, 'alpha': 8, 'cyan': 1, 'magenta': 2, 'undefined': 0, 'blue': 4, 'index': 32, 'gray_channels': 128, 'composite_channels': 47, 'green': 2, 'all_channels': 134217727, 'black': 32, 'red': 1}

	(dict [http://docs.python.org/library/stdtypes.html#dict]) The dictionary of channel types.

	'undefined'

	'red'

	'gray'

	'cyan'

	'green'

	'magenta'

	'blue'

	'yellow'

	'alpha'

	'opacity'

	'black'

	'index'

	'composite_channels'

	'all_channels'

	'true_alpha'

	'rgb_channels'

	'gray_channels'

	'sync_channels'

	'default_channels'

See also

	ImageMagick Color Channels [http://www.imagemagick.org/Magick++/Enumerations.html#ChannelType]

	Lists the various channel types with descriptions of each

	
wand.image.COMPOSITE_OPERATORS = ('undefined', 'no', 'add', 'atop', 'blend', 'bumpmap', 'change_mask', 'clear', 'color_burn', 'color_dodge', 'colorize', 'copy_black', 'copy_blue', 'copy', 'copy_cyan', 'copy_green', 'copy_magenta', 'copy_opacity', 'copy_red', 'copy_yellow', 'darken', 'dst_atop', 'dst', 'dst_in', 'dst_out', 'dst_over', 'difference', 'displace', 'dissolve', 'exclusion', 'hard_light', 'hue', 'in', 'lighten', 'linear_light', 'luminize', 'minus', 'modulate', 'multiply', 'out', 'over', 'overlay', 'plus', 'replace', 'saturate', 'screen', 'soft_light', 'src_atop', 'src', 'src_in', 'src_out', 'src_over', 'subtract', 'threshold', 'xor', 'divide')

	(tuple) The list of composition operators

	'undefined'

	'no'

	'add'

	'atop'

	'blend'

	'bumpmap'

	'change_mask'

	'clear'

	'color_burn'

	'color_dodge'

	'colorize'

	'copy_black'

	'copy_blue'

	'copy'

	'copy_cyan'

	'copy_green'

	'copy_magenta'

	'copy_opacity'

	'copy_red'

	'copy_yellow'

	'darken'

	'dst_atop'

	'dst'

	'dst_in'

	'dst_out'

	'dst_over'

	'difference'

	'displace'

	'dissolve'

	'exclusion'

	'hard_light'

	'hue'

	'in'

	'lighten'

	'linear_light'

	'luminize'

	'minus'

	'modulate'

	'multiply'

	'out'

	'over'

	'overlay'

	'plus'

	'replace'

	'saturate'

	'screen'

	'soft_light'

	'src_atop'

	'src'

	'src_in'

	'src_out'

	'src_over'

	'subtract'

	'threshold'

	'xor'

	'divide'

Changed in version 0.3.0: Renamed from COMPOSITE_OPS to COMPOSITE_OPERATORS.

See also

	Compositing Images [http://www.imagemagick.org/Usage/compose/] ImageMagick v6 Examples

	Image composition is the technique of combining images that have,
or do not have, transparency or an alpha channel.
This is usually performed using the IM composite command.
It may also be performed as either part of a larger sequence of
operations or internally by other image operators.

	ImageMagick Composition Operators [http://www.rubblewebs.co.uk/imagemagick/operators/compose.php]

	Demonstrates the results of applying the various composition
composition operators.

	
wand.image.EVALUATE_OPS = ('undefined', 'add', 'and', 'divide', 'leftshift', 'max', 'min', 'multiply', 'or', 'rightshift', 'set', 'subtract', 'xor', 'pow', 'log', 'threshold', 'thresholdblack', 'thresholdwhite', 'gaussiannoise', 'impulsenoise', 'laplaciannoise', 'multiplicativenoise', 'poissonnoise', 'uniformnoise', 'cosine', 'sine', 'addmodulus', 'mean', 'abs', 'exponential', 'median', 'sum')

	(tuple) The list of evaluation operators

	'undefined'

	'add'

	'and'

	'divide'

	'leftshift'

	'max'

	'min'

	'multiply'

	'or'

	'rightshift'

	'set'

	'subtract'

	'xor'

	'pow'

	'log'

	'threshold'

	'thresholdblack'

	'thresholdwhite'

	'gaussiannoise'

	'impulsenoise'

	'laplaciannoise'

	'multiplicativenoise'

	'poissonnoise'

	'uniformnoise'

	'cosine'

	'sine'

	'addmodulus'

	'mean'

	'abs'

	'exponential'

	'median'

	'sum'

See also

	ImageMagick Image Evaluation Operators [http://www.magickwand.org/MagickEvaluateImage.html]

	Describes the MagickEvaluateImageChannel method and lists the
various evaluations operators

	
wand.image.FILTER_TYPES = ('undefined', 'point', 'box', 'triangle', 'hermite', 'hanning', 'hamming', 'blackman', 'gaussian', 'quadratic', 'cubic', 'catrom', 'mitchell', 'jinc', 'sinc', 'sincfast', 'kaiser', 'welsh', 'parzen', 'bohman', 'bartlett', 'lagrange', 'lanczos', 'lanczossharp', 'lanczos2', 'lanczos2sharp', 'robidoux', 'robidouxsharp', 'cosine', 'spline', 'sentinel')

	(tuple) The list of filter types.

	'undefined'

	'point'

	'box'

	'triangle'

	'hermite'

	'hanning'

	'hamming'

	'blackman'

	'gaussian'

	'quadratic'

	'cubic'

	'catrom'

	'mitchell'

	'jinc'

	'sinc'

	'sincfast'

	'kaiser'

	'welsh'

	'parzen'

	'bohman'

	'bartlett'

	'lagrange'

	'lanczos'

	'lanczossharp'

	'lanczos2'

	'lanczos2sharp'

	'robidoux'

	'robidouxsharp'

	'cosine'

	'spline'

	'sentinel'

See also

	ImageMagick Resize Filters [http://www.imagemagick.org/Usage/resize/]

	Demonstrates the results of resampling images using the various
resize filters and blur settings available in ImageMagick.

	
wand.image.GRAVITY_TYPES = ('forget', 'north_west', 'north', 'north_east', 'west', 'center', 'east', 'south_west', 'south', 'south_east', 'static')

	(tuple) The list of gravity types.

New in version 0.3.0.

	
wand.image.IMAGE_TYPES = ('undefined', 'bilevel', 'grayscale', 'grayscalematte', 'palette', 'palettematte', 'truecolor', 'truecolormatte', 'colorseparation', 'colorseparationmatte', 'optimize', 'palettebilevelmatte')

	(tuple) The list of image types

	'undefined'

	'bilevel'

	'grayscale'

	'grayscalematte'

	'palette'

	'palettematte'

	'truecolor'

	'truecolormatte'

	'colorseparation'

	'colorseparationmatte'

	'optimize'

	'palettebilevelmatte'

See also

	ImageMagick Image Types [http://www.imagemagick.org/api/magick-image.php#MagickSetImageType]

	Describes the MagickSetImageType method which can be used
to set the type of an image

	
wand.image.ORIENTATION_TYPES = ('undefined', 'top_left', 'top_right', 'bottom_right', 'bottom_left', 'left_top', 'right_top', 'right_bottom', 'left_bottom')

	(tuple) The list of orientation types.

New in version 0.3.0.

	
wand.image.UNIT_TYPES = ('undefined', 'pixelsperinch', 'pixelspercentimeter')

	(tuple) The list of resolution unit types.

	'undefined'

	'pixelsperinch'

	'pixelspercentimeter'

See also

	ImageMagick Image Units [http://www.imagemagick.org/api/magick-image.php#MagickSetImageUnits]

	Describes the MagickSetImageUnits method which can be used
to set image units of resolution

	
class wand.image.BaseImage(wand)

	The abstract base of Im