
Wand Documentation
Release 0.5.4

Hong Minhee

Jul 09, 2019

Contents

1 Why just another binding? 3

2 Requirements 5

3 User’s guide 7
3.1 What’s new in Wand 0.5? . 7
3.2 Installation . 10
3.3 Reading images . 13
3.4 Writing images . 16
3.5 Resizing and cropping . 18
3.6 Transformation . 22
3.7 Colorspace . 34
3.8 Color Enhancement . 35
3.9 Distortion . 43
3.10 Drawing . 50
3.11 Reading EXIF . 61
3.12 Layers . 62
3.13 Sequence . 68
3.14 Resource management . 70
3.15 Running tests . 70
3.16 Roadmap . 72
3.17 Wand Changelog . 72
3.18 Talks and Presentations . 87

4 References 89
4.1 wand — Simple MagickWand API binding for Python . 89

5 Troubleshooting 99
5.1 Mailing list . 99
5.2 Stack Overflow . 99
5.3 Documentation . 99

6 Open source 101

7 Indices and tables 103

Python Module Index 105

i

Index 107

ii

Wand Documentation, Release 0.5.4

Wand is a ctypes-based simple ImageMagick binding for Python.

from wand.image import Image
from wand.display import display

with Image(filename='mona-lisa.png') as img:
print(img.size)
for r in 1, 2, 3:

with img.clone() as i:
i.resize(int(i.width * r * 0.25), int(i.height * r * 0.25))
i.rotate(90 * r)
i.save(filename='mona-lisa-{0}.png'.format(r))
display(i)

You can install it from PyPI (and it requires MagickWand library):

$ apt-get install libmagickwand-dev
$ pip install Wand

Contents 1

https://pypi.python.org/pypi/Wand
http://docs.wand-py.org/en/latest/
https://travis-ci.org/emcconville/wand
https://coveralls.io/r/emcconville/wand
https://docs.python.org/3/library/ctypes.html#module-ctypes
http://www.imagemagick.org/
https://pypi.python.org/pypi/Wand

Wand Documentation, Release 0.5.4

2 Contents

CHAPTER 1

Why just another binding?

There are already many MagickWand API bindings for Python, however they are lacking something we need:

• Pythonic and modern interfaces

• Good documentation

• Binding through ctypes (not C API) — we are ready to go PyPy!

• Installation using pip

3

https://docs.python.org/3/library/ctypes.html#module-ctypes

Wand Documentation, Release 0.5.4

4 Chapter 1. Why just another binding?

CHAPTER 2

Requirements

• Python 2.6 or higher

– CPython 2.6 or higher

– CPython 3.3 or higher

– PyPy 1.5 or higher

• MagickWand library

– libmagickwand-dev for APT on Debian/Ubuntu

– imagemagick for MacPorts/Homebrew on Mac

– ImageMagick-devel for Yum on CentOS

5

Wand Documentation, Release 0.5.4

6 Chapter 2. Requirements

CHAPTER 3

User’s guide

3.1 What’s new in Wand 0.5?

This guide doesn’t cover all changes in 0.5. See also the full list of changes in 0.5 series.

3.1.1 Numpy I/O

New in version 0.5.3.

Instances of Wand’s Image can be created directly from a numpy.array object, or other objects that implements
array interface protocol.

import numpy as np
from wand.image import Image

array = np.zeros([100, 100, 3], dtype=np.uint8)
array[:, :] = [0xff, 0x00, 0x00]

with Image.from_array(array) as img:
print(img[0, 0]) #=> srgb(255, 0, 0)

You can also convert an instance of Image into an array.

import numpy as np
from wand.image import Image

with Image(filename='rose:') as img:
array = np.array(img)
print(array.shape) #=> (70, 46, 3)

7

https://docs.scipy.org/doc/numpy/reference/arrays.interface.html

Wand Documentation, Release 0.5.4

3.1.2 Resource Limits

New in version 0.5.1.

The limits dictionary helper allows you to define run-time policies. Doing this allows your application to process
images without consuming too much system resources.

from wand.image import Image
from wand.resource import limits

limits['thread'] = 1 # Only allow one CPU thread for raster.
with Image(filename='input.tif') as img:

pass

See ResourceLimits for more details.

3.1.3 Import & Extract Profiles

New in version 0.5.1.

Embedded profiles, like ICC, can be accessed via Image.profiles dictionary.

with Image(filename='photo.jpg') as photo:
with open('color_profile.icc', 'rb') as profile:

photo.profiles['icc'] = profile.read()

Hint: Each profile payload will be a raw binary blob. ImageMagick & Wand will not edit payloads, but only get, set,
and delete them from an image.

See ProfileDict for more details.

3.1.4 Pseudo Images

New in version 0.5.0.

The Image constructor now accepts the pseudo paramater. This allows you to quickly read Pseudo-image Formats,
and Built-in Patterns

Checkout Open a Pseudo Image for some examples.

3.1.5 ImageMagick-7 Support

New in version 0.5.0.

The release of Wand 0.5 now supports both versions of ImageMagick-6 & ImageMagick-7. ImageMagick-7 intro-
duces some key behavior changes, and some care should go into any application that was previously written for
ImageMagick-6 before upgrading system libraries.

To understand the fundamental changes, please review Porting to ImageMagick Version 7 for a more definitive
overview.

Notes on Porting 6 t0 7

A few key changes worth reviewing.

8 Chapter 3. User’s guide

https://en.wikipedia.org/wiki/ICC_profile
https://imagemagick.org/script/formats.php#pseudo
https://imagemagick.org/script/formats.php#builtin-images
https://www.imagemagick.org/script/porting.php

Wand Documentation, Release 0.5.4

HDRI by Default

Vanilla installs of ImageMagick-7 include HDRI enabled by default. Users may experiences increase depth of color,
but with reduced performances during certain color manipulation routines. Max color-values should never be hard-
coded, but rely on Image.quantum_range to ensure consistent results. It is also possible to experiences color-
value underflow / overflow during arithmetic operations when upgrading.

An example of an underflow between versions:

ImageMagick-6
with Image(width=1, height=1, background=Color("gray5")) as canvas:

canvas.evaluate("subtract", canvas.quantum_range * 0.07)
print(canvas[0, 0]) #=> srgb(0,0,0)

ImageMagick-7
with Image(width=1, height=1, background=Color("gray5")) as canvas:

canvas.evaluate("subtract", canvas.quantum_range * 0.07)
print(canvas[0, 0]) #=> srgb(-1.90207%,-1.90207%,-1.90207%)

The majority of the image-manipulation methods are guarded against overflows by internal clamping routines, but folks
working directly with Image.evaluate(), Image.function(), and Image.composite_channel()
should take caution. Method Image.clamp() as been provided for this task.:

with Image(width=1, height=1, background=Color("gray5")) as canvas:
canvas.evaluate("subtract", canvas.quantum_range * 0.07)
canvas.clamp()
print(canvas[0, 0]) #=> srgb(0,0,0)

Image Color-Channel Awareness

With ImageMagick-7, colors have descriptive traits, and are managed through channel-masks. An elegant solution to
manage active color channels, and simplify core library functions.

Users implementing Image.composite_channel() should review previous solutions of composite "copy..
." operators as the behavior may have changed.

You can play around with the effects of channel masks with MagickSetImageChannelMask() function. For
example:

from wand.image import Image, CHANNELS
from wand.api import library

with Image(filename="rose:") as img:
Isolate only Red & Green channels
active_mask = CHANNELS["red"] | CHANNELS["green"]
previous_mask = library.MagickSetImageChannelMask(img.wand, active_mask)
img.evaluate("rightshift", 1)
Restore previous channels
library.MagickSetImageChannelMask(img.wand, previous_mask)
img.save(filename="blue_rose.png")

Alpha Replaces Opacity & Matte

Opacity methods & enumerated value have been renamed to alpha with ImageMagick-7. Although the majority of the
functionalities are the same, user are responsible for checking the library version before calling an opacity method /

3.1. What’s new in Wand 0.5? 9

https://en.wikipedia.org/wiki/Clamping_(graphics)

Wand Documentation, Release 0.5.4

enumerated value.

For example:

from wand.version import MAGICK_VERSION_NUMBER
from wand.image import Image

with Image(filename="wizard:") as img:
image_type = "truecoloralpha" # IM7 enum
if MAGICK_VERSION_NUMBER < 0x700: # Backwards support for IM6

image_type = "truecolormatte"
img.type = image_type

The reference documentation have been updated to note specific values available per ImageMagick versions.

Note: For “What’s New in Wand 0.4”, see previous announcements.

3.2 Installation

Wand itself can be installed from PyPI using pip:

$ pip install Wand

Wand is a Python binding of ImageMagick, so you have to install it as well:

• Debian/Ubuntu

• Fedora/CentOS

• Mac

• Windows

• Explicitly link to specific ImageMagick

Or you can simply install Wand and its entire dependencies using the package manager of your system (it’s way
convenient but the version might be outdated):

• Debian/Ubuntu

• Fefora

• FreeBSD

3.2.1 Install ImageMagick on Debian/Ubuntu

If you’re using Linux distributions based on Debian like Ubuntu, it can be easily installed using APT:

$ sudo apt-get install libmagickwand-dev

If you need SVG, WMF, OpenEXR, DjVu, and Graphviz support you have to install libmagickcore5-extra as
well:

$ sudo apt-get install libmagickcore5-extra

10 Chapter 3. User’s guide

0.4.html
http://pypi.python.org/pypi/Wand
http://www.imagemagick.org/

Wand Documentation, Release 0.5.4

3.2.2 Install ImageMagick on Fedora/CentOS

If you’re using Linux distributions based on Redhat like Fedora or CentOS, it can be installed using Yum:

$ yum update
$ yum install ImageMagick-devel

3.2.3 Install ImageMagick on Mac

You need one of Homebrew or MacPorts to install ImageMagick.

Homebrew

$ brew install imagemagick

If seam carving (Image.liquid_rescale()) is needed you have install liblqr as well:

$ brew install imagemagick --with-liblqr

MacPorts

$ sudo port install imagemagick

If your Python in not installed using MacPorts, you have to export MAGICK_HOME path as well. Because
Python that is not installed using MacPorts doesn’t look up /opt/local, the default path prefix of MacPorts
packages.

$ export MAGICK_HOME=/opt/local

3.2.4 Install ImageMagick on Windows

You could build ImageMagick by yourself, but it requires a build tool chain like Visual Studio to compile it. The
easiest way is simply downloading a prebuilt binary of ImageMagick for your architecture (win32 or win64).

You can download it from the following link:

http://legacy.imagemagick.org/script/binary-releases.php#windows

Choose a binary for your architecture:

Windows 32-bit ImageMagick-6.9.x-x-Q16-x86-dll.exe

Windows 64-bit ImageMagick-6.9.x-x-Q16-x64-dll.exe

Note: Double check your Python runtime, and ensure the architectures match. A 32-bit Python runtime can not load
a 64-bit dynamic library.

3.2. Installation 11

http://mxcl.github.com/homebrew/
http://www.macports.org/
http://liblqr.wikidot.com/
http://legacy.imagemagick.org/script/binary-releases.php#windows

Wand Documentation, Release 0.5.4

Note that you have to check Install development headers and libraries for C and C++ to make Wand able to link to it.

Lastly you have to set MAGICK_HOME environment variable to the path of ImageMagick (e.g. C:\Program
Files\ImageMagick-6.9.3-Q16). You can set it in Computer → Properties → Advanced system settings
→ Advanced → Environment Variables. . . .

12 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.2.5 Explicitly link to specific ImageMagick

Although Wand tries searching operating system’s standard library paths for a ImageMagick installation, sometimes
you need to explicitly specify the path of ImageMagick installation.

In that case, you can give the path to Wand by setting MAGICK_HOME. Wand respects MAGICK_HOME, the environ-
ment variable which has been reserved by ImageMagick.

3.2.6 Install Wand on Debian/Ubuntu

Wand itself is already packaged in Debian/Ubuntu APT repository: python-wand. You can install it using apt-get
command:

$ sudo apt-get install python-wand

3.2.7 Install Wand on Fedora

Wand itself is already packaged in Fedora package DB: python-wand. You can install it using dnf command:

$ dnf install python-wand # Python 2
$ dnf install python3-wand # Python 3

3.2.8 Install Wand on FreeBSD

Wand itself is already packaged in FreeBSD ports collection: py-wand. You can install it using pkg_add command:

$ pkg_add -r py-wand

3.3 Reading images

There are several ways to open images:

• To open an image file

• To read a input stream (file-like object) that provides an image binary

• To read a binary string that contains image

• To copy an existing image object

• To open an empty image

All of these operations are provided by the constructor of Image class.

3.3.1 Open an image file

The most frequently used way is just to open an image by its filename. Image’s constructor can take the parameter
named filename:

3.3. Reading images 13

http://packages.debian.org/sid/python-wand
https://admin.fedoraproject.org/pkgdb/package/python-wand/
http://www.freebsd.org/cgi/cvsweb.cgi/ports/graphics/py-wand/

Wand Documentation, Release 0.5.4

from __future__ import print_function
from wand.image import Image

with Image(filename='pikachu.png') as img:
print('width =', img.width)
print('height =', img.height)

Note: It must be passed by keyword argument exactly. Because the constructor has many parameters that are exclusive
to each other.

There is a keyword argument named file as well, but don’t confuse it with filename. While filename takes a
string of a filename, file takes a input stream (file-like object).

3.3.2 Read a input stream

If an image to open cannot be located by a filename but can be read through input stream interface (e.g. opened by
os.popen(), contained in StringIO, read by urllib2.urlopen()), it can be read by Image constructor’s
file parameter. It takes all file-like objects which implements read() method:

from __future__ import print_function
from urllib2 import urlopen
from wand.image import Image

response = urlopen('https://stylesha.re/minhee/29998/images/100x100')
try:

with Image(file=response) as img:
print('format =', img.format)
print('size =', img.size)

finally:
response.close()

In the above example code, response object returned by urlopen() function has read() method, so it also can
be used as an input stream for a downloaded image.

3.3.3 Read a blob

If you have just a binary string (str) of the image, you can pass it into Image constructor’s blob parameter to read:

from __future__ import print_function
from wand.image import Image

with open('pikachu.png') as f:
image_binary = f.read()

with Image(blob=image_binary) as img:
print('width =', img.width)
print('height =', img.height)

It is a way of the lowest level to read an image. There will probably not be many cases to use it.

14 Chapter 3. User’s guide

https://docs.python.org/3/library/os.html#os.popen
https://docs.python.org/3/library/stdtypes.html#str

Wand Documentation, Release 0.5.4

3.3.4 Clone an image

If you have an image already and have to copy it for safe manipulation, use clone() method:

from wand.image import Image

with Image(filename='pikachu.png') as original:
with original.clone() as converted:

converted.format = 'png'
operations on a converted image...

For some operations like format converting or cropping, there are safe methods that return a new image of manipulated
result like convert() or slicing operator. So the above example code can be replaced by:

from wand.image import Image

with Image(filename='pikachu.png') as original:
with original.convert('png') as converted:

operations on a converted image...

3.3.5 Hint file format

When it’s read from a binary string or a file object, you can explicitly give the hint which indicates file format of an
image to read — optional format keyword is for that:

from wand.image import Image

with Image(blob=image_binary, format='ico') as image:
print(image.format)

New in version 0.2.1: The format parameter to Image constructor.

3.3.6 Open an empty image

To open an empty image, you have to set its width and height:

from wand.image import Image

with Image(width=200, height=100) as img:
img.save(filename='200x100-transparent.png')

Its background color will be transparent by default. You can set background argument as well:

from wand.color import Color
from wand.image import Image

with Color('red') as bg:
with Image(width=200, height=100, background=bg) as img:

img.save(filename='200x100-red.png')

New in version 0.2.2: The width, height, and background parameters to Image constructor.

3.3. Reading images 15

Wand Documentation, Release 0.5.4

3.3.7 Open a Pseudo Image

A pseudo image can refer to any of ImageMagick’s internal images that are accessable through coder protocols.

from wand.image import Image

with Image(width=100, height=100, pseudo='plasma:') as img:
img.save(filename='100x100-plasma.png')

Commun Pseudo images

• 'canvas:COLOR', or 'xc:COLOR', where COLOR is any valid color value string.

• 'caption:TEXT', where TEXT is a string message.

• 'gradient:START-END', generates a blended gradient between two colors, where both START and END
are color value strings.

• 'hald:', creates a Higher And Lower Dimension matrix table.

• 'inline:VALUE', where VALUE is a data-url / base64 string value.

• 'label:TEXT', where TEXT is a string message.

• 'pattern:LABEL', generates a repeating pattern, where LABEL is the pattern name. See Built-in Patterns

• 'plasma:', generates a plasma fractal image.

• 'radial-gradient:', similar to gradient:, but generates a gradual blend from center of the image.

• 'tile:FILENAME', generates a repeating tile effect from a given images, where FILENAME is the path of a
source image.

A list of all pseudo images can be found at https://imagemagick.org/script/formats.php#pseudo

New in version 0.5.0: The pseudo parameter was added to the Image constructor.

3.4 Writing images

You can write an Image object into a file or a byte string buffer (blob) as format what you want.

3.4.1 Convert images to JPEG

If you wonder what is image’s format, use format property.

>>> image.format
'JPEG'

The format property is writable, so you can convert images by setting this property.

from wand.image import Image

with Image(filename='pikachu.png') as img:
img.format = 'jpeg'
operations to a jpeg image...

If you want to convert an image without any changes of the original, use convert() method instead:

16 Chapter 3. User’s guide

https://imagemagick.org/script/formats.php#builtin-patterns
https://imagemagick.org/script/formats.php#pseudo

Wand Documentation, Release 0.5.4

from wand.image import Image

with Image(filename='pikachu.png') as original:
with original.convert('jpeg') as converted:

operations to a jpeg image...
pass

Note: Support for some of the formats are delegated to libraries or external programs. To get a complete listing of
which image formats are supported on your system, use identify command provided by ImageMagick:

$ identify -list format

3.4.2 Save to file

In order to save an image to a file, use save() method with the keyword argument filename:

from wand.image import Image

with Image(filename='pikachu.png') as img:
img.format = 'jpeg'
img.save(filename='pikachu.jpg')

Note: The image format does not effect the file being saved, to save with a given colorspace use:

from wand.image import Image

with Image(filename='pikachu.jpg') as img:
img.format = 'jpeg'
img.save(filename='PNG24:pikachu.png')

3.4.3 Save to stream

You can write an image into a output stream (file-like object which implements write() method) as well. The
parameter file takes a such object (it also is the first positional parameter of save() method).

For example, the following code converts pikachu.png image into JPEG, gzips it, and then saves it to pikachu.
jpg.gz:

import gzip
from wand.image import Image

gz = gzip.open('pikachu.jpg.gz')
with Image(filename='pikachu.png') as img:

img.format = 'jpeg'
img.save(file=gz)

gz.close()

3.4. Writing images 17

Wand Documentation, Release 0.5.4

3.4.4 Get binary string

Want just a binary string of the image? Use make_blob() method so:

from wand.image import Image

with image(filename='pikachu.png') as img:
img.format = 'jpeg'
jpeg_bin = img.make_blob()

There’s the optional format parameter as well. So the above example code can be simpler:

from wand.image import Image

with Image(filename='pikachu.png') as img:
jpeg_bin = img.make_blob('jpeg')

3.5 Resizing and cropping

Creating thumbnails (by resizing images) and cropping are most frequent works about images. This guide explains
ways to deal with sizes of images.

Above all, to get the current size of the image check width and height properties:

>>> from urllib.request import urlopen
>>> from wand.image import Image
>>> f = urlopen('http://pbs.twimg.com/profile_images/712673855341367296/WY6aLbBV_
→˓normal.jpg')
>>> with Image(file=f) as img:
... width = img.width
... height = img.height
...
>>> f.close()
>>> width
48
>>> height
48

If you want the pair of (width, height), check size property also.

Note: These three properties are all readonly.

3.5.1 Resize images

It scales an image into a desired size even if the desired size is larger than the original size. ImageMagick provides so
many algorithms for resizing. The constant FILTER_TYPES contains names of filtering algorithms.

See also:

ImageMagick Resize Filters Demonstrates the results of resampling three images using the various resize filters and
blur settings available in ImageMagick, and the file size of the resulting thumbnail images.

18 Chapter 3. User’s guide

http://www.dylanbeattie.net/magick/filters/result.html

Wand Documentation, Release 0.5.4

Image.resize() method takes width and height of a desired size, optional filter ('undefined' by
default which means IM will try to guess best one to use) and optional blur (default is 1). It returns nothing but
resizes itself in-place.

>>> img.size
(500, 600)
>>> img.resize(50, 60)
>>> img.size
(50, 60)

3.5.2 Sample images

Although Image.resize() provides many filter options, it’s relatively slow. If speed is important for the
job, you’d better use Image.sample() instead. It works in similar way to Image.resize() except it doesn’t
provide filter and blur options:

>>> img.size
(500, 600)
>>> img.sample(50, 60)
>>> img.size
(50, 60)

3.5.3 Crop images

To extract a sub-rectangle from an image, use the crop() method. It crops the image in-place. Its parameters are
left, top, right, bottom in order.

>>> img.size
(200, 300)
>>> img.crop(10, 20, 50, 100)
>>> img.size
(40, 80)

It can also take keyword arguments width and height. These parameters replace right and bottom.

>>> img.size
(200, 300)
>>> img.crop(10, 20, width=40, height=80)
>>> img.size
(40, 80)

There is an another way to crop images: slicing operator. You can crop an image by [left:right,
top:bottom] with maintaining the original:

>>> img.size
(300, 300)
>>> with img[10:50, 20:100] as cropped:
... print(cropped.size)
...
(40, 80)
>>> img.size
(300, 300)

Specifying gravity along with width and height keyword arguments allows a simplified cropping alternative.

3.5. Resizing and cropping 19

Wand Documentation, Release 0.5.4

>>> img.size
(300, 300)
>>> img.crop(width=40, height=80, gravity='center')
>>> img.size
(40, 80)

3.5.4 Transform images

Use this function to crop and resize and image at the same time, using ImageMagick geometry strings. Cropping is
performed first, followed by resizing.

For example, if you want to crop your image to 300x300 pixels and then scale it by 2x for a final size of 600x600
pixels, you can call:

img.transform('300x300', '200%')

Other example calls:

crop top left corner
img.transform('50%')

scale height to 100px and preserve aspect ratio
img.transform(resize='x100')

if larger than 640x480, fit within box, preserving aspect ratio
img.transform(resize='640x480>')

crop a 320x320 square starting at 160x160 from the top left
img.transform(crop='320+160+160')

See also:

ImageMagick Geometry Specifications Cropping and resizing geometry for the transform method are specified
according to ImageMagick’s geometry string format. The ImageMagick documentation provides more informa-
tion about geometry strings.

3.5.5 Seam carving (also known as content-aware resizing)

New in version 0.3.0.

Seam carving is an algorithm for image resizing that functions by establishing a number of seams (paths of least
importance) in an image and automatically removes seams to reduce image size or inserts seams to extend it.

In short: you can magickally resize images without distortion! See the following examples:

20 Chapter 3. User’s guide

http://www.imagemagick.org/script/command-line-processing.php#geometry
http://en.wikipedia.org/wiki/Seam_carving

Wand Documentation, Release 0.5.4

Original Resized

Cropped Seam carving

You can easily rescale images with seam carving using Wand: use Image.liquid_rescale() method:

>>> image = Image(filename='seam.jpg')
>>> image.size
(320, 234)
>>> with image.clone() as resize:
... resize.resize(234, 234)
... resize.save(filename='seam-resize.jpg')
... resize.size
...
(234, 234)
>>> with image[:234, :] as crop:
... crop.save(filename='seam-crop.jpg')
... crop.size
...

(continues on next page)

3.5. Resizing and cropping 21

Wand Documentation, Release 0.5.4

(continued from previous page)

(234, 234)
>>> with image.clone() as liquid:
... liquid.liquid_rescale(234, 234)
... liquid.save(filename='seam-liquid.jpg')
... liquid.size
...
(234, 234)

Note: It may raise MissingDelegateError if your ImageMagick is configured --without-lqr option. In
this case you should recompile ImageMagick.

See also:

Seam carving — Wikipedia The article which explains what seam carving is on Wikipedia.

Note: The image seam.jpg used in the above example is taken by D. Sharon Pruitt and licensed under CC-BY-2.0.
It can be found the original photography from Flickr.

3.6 Transformation

Note: The image transform.jpg used in this docs is taken by Megan Trace, and licensed under CC BY-NC 2.0.
It can be found the original photography from Flickr.

3.6.1 Charcoal

New in version 0.5.3.

One of the artistic simulations, charcoal() can emulate a drawing on paper.

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

right.charcoal(radius=1.5, sigma=0.5)
left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-charcoal.jpg")

22 Chapter 3. User’s guide

http://en.wikipedia.org/wiki/Seam_carving
http://www.pinksherbet.com/
http://creativecommons.org/licenses/by/2.0/
http://www.flickr.com/photos/pinksherbet/2443468531/
http://megantracephoto.tumblr.com/
http://creativecommons.org/licenses/by-nc/2.0/deed.en
http://www.flickr.com/photos/megantrace/6234830561/

Wand Documentation, Release 0.5.4

3.6.2 Despeckle

New in version 0.5.0.

Despeckling is one of the many techniques you can use to reduce noise on a given image. Also see Enhance.

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

right.despeckle()
left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-despeckle.jpg")

3.6.3 Edge

New in version 0.5.0.

Detects edges on black and white images with a simple convolution filter. If used with a color image, the transformation
will be applied to each color-channel.

3.6. Transformation 23

Wand Documentation, Release 0.5.4

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

right.transform_colorspace("gray")
right.edge(1)
left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-edge.jpg")

3.6.4 Emboss

New in version 0.5.0.

Generates a 3D effect that can be described as print reliefs. Like Edge, best results can be generated with grayscale
image. Also see Shade.

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

right.transform_colorspace("gray")
right.emboss(radius=3.0, sigma=1.75)
left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-emboss.jpg")

24 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.6.5 Enhance

New in version 0.5.0.

Reduce the noise of an image by applying an auto-filter. Also see Despeckle.

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

right.enhance()
left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-enhance.jpg")

3.6.6 Flip and flop

New in version 0.3.0.

You can make a mirror image by reflecting the pixels around the central x- or y-axis. For example, where the given
image transform.jpg:

3.6. Transformation 25

Wand Documentation, Release 0.5.4

The following code flips the image using Image.flip() method:

from wand.image import Image

with Image(filename='transform.jpg') as image:
with image.clone() as flipped:

flipped.flip()
flipped.save(filename='transform-flipped.jpg')

The image transform-flipped.jpg generated by the above code looks like:

As like flip(), flop() does the same thing except it doesn’t make a vertical mirror image but horizontal:

from wand.image import Image

with Image(filename='transform.jpg') as image:
with image.clone() as flopped:

flopped.flop()
(continues on next page)

26 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

(continued from previous page)

flopped.save(filename='transform-flopped.jpg')

The image transform-flopped.jpg generated by the above code looks like:

3.6.7 Noise

New in version 0.5.3.

You can add random noise to an image. This operation can be useful when applied before a blur operation to defuse
an image. The types of noise can be any of the following.

• 'gaussian'

• 'impulse'

• 'laplacian'

• 'multiplicative_gaussian'

• 'poisson'

• 'random'

• 'uniform'

The amount of noise can be adjusted by passing an attenuate kwarg where the value can be between 0.0 and 1.0.

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

right.noise("laplacian", attenuate=1.0)
left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-noise.jpg")

3.6. Transformation 27

Wand Documentation, Release 0.5.4

3.6.8 Remap

New in version 0.5.3.

Remap replaces all pixels with the closest matching pixel found in the affinity reference image.

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

with Image(width=100, height=1, pseudo="plasma:") as affinity:
right.remap(affinity)

left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-remap.jpg")

3.6.9 Rotation

New in version 0.1.8.

Image object provides a simple method to rotate images: rotate(). It takes a degree which can be 0 to 359.
(Actually you can pass 360, 361, or more but it will be the same to 0, 1, or more respectively.)

28 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

For example, where the given image transform.jpg:

The below code makes the image rotated 90° to right:

from wand.image import Image

with Image(filename='transform.jpg') as image:
with image.clone() as rotated:

rotated.rotate(90)
rotated.save(filename='transform-rotated-90.jpg')

The generated image transform-rotated-90.jpg looks like:

3.6. Transformation 29

Wand Documentation, Release 0.5.4

If degree is not multiples of 90, the optional parameter background will help (its default is transparent):

from wand.color import Color
from wand.image import Image

with Image(filename='transform.jpg') as image:
with image.clone() as rotated:

rotated.rotate(135, background=Color('rgb(229,221,112)'))
rotated.save(filename='transform-rotated-135.jpg')

The generated image transform-rotated-135.jpg looks like:

30 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.6.10 Shade

New in version 0.5.0.

Creates a 3D effect by simulating light from source where aziumth controls the X/Y angle, and elevation
controls the Z angle. You can also determine of the resulting image should be transformed to grayscale by passing
gray boolean.

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

right.shade(gray=True,
azimuth=286.0,
elevation=45.0)

left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-shade.jpg")

3.6. Transformation 31

Wand Documentation, Release 0.5.4

3.6.11 Sketch

New in version 0.5.3.

Simulates an artist sketch drawing. Also see Charcoal.

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

right.transform_colorspace("gray")
right.sketch(0.5, 0.0, 98.0)
left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-sketch.jpg")

3.6.12 Spread

New in version 0.5.3.

Spread replaces each pixel with the a random pixel value found near by. The size of the area to search for a new pixel
can be controlled by defining a radius.

32 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

right.spread(8.0)
left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-spread.jpg")

3.6.13 Statistic

New in version 0.5.3.

Similare to Spread, but replaces each pixel with the result of a mathematical operation performed against neighboring
pixel values.

The type of statistic operation can be any of the following.

• 'gradient'

• 'maximum'

• 'mean'

• 'median'

• 'minimum'

• 'mode'

• 'nonpeak'

• 'root_mean_square'

• 'standard_deviation'

The size neighboring pixels to evaluate can be defined by passing width, and height kwargs.

from wand.image import Image

with Image(filename="hummingbird.jpg") as left:
with left.clone() as right:

right.statistic("median", width=8, height=5)
(continues on next page)

3.6. Transformation 33

Wand Documentation, Release 0.5.4

(continued from previous page)

left.extent(width=left.width*2)
left.composite(right, top=0, left=right.width)

left.save(filename="hummingbird-statistic.jpg")

3.7 Colorspace

3.7.1 Image types

Every Image object has type property which identifies its colorspace. The value can be one of IMAGE_TYPES
enumeration, and set of its available values depends on its format as well. For example, 'grayscale' isn’t
available on JPEG.

>>> from wand.image import Image
>>> with Image(filename='wandtests/assets/bilevel.gif') as img:
... img.type
...
'bilevel'
>>> with Image(filename='wandtests/assets/sasha.jpg') as img2:
... img2.type
...
'truecolor'

You can change this value:

with Image(filename='wandtests/assets/bilevel.gif') as img:
img.type = 'truecolor'
img.save(filename='truecolor.gif')

See also:

-type — ImageMagick: command-line-Options Corresponding command-line option of convert program.

3.7.2 Enable alpha channel

You can find whether an image has alpha channel and change it to have or not to have the alpha channel using
alpha_channel property, which is preserving a bool value.

34 Chapter 3. User’s guide

http://www.imagemagick.org/script/command-line-options.php#type
https://docs.python.org/3/library/functions.html#bool

Wand Documentation, Release 0.5.4

>>> with Image(filename='wandtests/assets/sasha.jpg') as img:
... img.alpha_channel
...
False
>>> with Image(filename='wandtests/assets/croptest.png') as img:
... img.alpha_channel
...
True

It’s a writable property:

with Image(filename='wandtests/assets/sasha.jpg') as img:
img.alpha_channel = True

3.8 Color Enhancement

3.8.1 Evaluate Expression

New in version 0.4.1.

Pixel channels can be manipulated by applying an arithmetic, relational, or logical expression. See EVALUATE_OPS
for a list of valid operations.

For example, when given image enhancement.jpg:

We can reduce the amount of data in the blue channel by applying the right-shift binary operator, and increase data in
the right channel with left-shift operator:

from wand.image import Image

with Image(filename='enhancement.jpg') as img:

(continues on next page)

3.8. Color Enhancement 35

Wand Documentation, Release 0.5.4

(continued from previous page)

B >> 1
img.evaluate(operator='rightshift', value=1, channel='blue')
R << 1
img.evaluate(operator='leftshift', value=1, channel='red')

3.8.2 Function Expression

New in version 0.4.1.

Similar to evaluate(), function() applies a multi-argument function to pixel channels. See
FUNCTION_TYPES for a list of available function formulas.

For example, when given image enhancement.jpg:

36 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

We can apply a Sinusoid function with the following:

from wand.image import Image

with Image(filename='enhancement.jpg') as img:
frequency = 3
phase_shift = -90
amplitude = 0.2
bias = 0.7
img.function('sinusoid', [frequency, phase_shift, amplitude, bias])

3.8. Color Enhancement 37

Wand Documentation, Release 0.5.4

3.8.3 FX Expressions

New in version 0.4.1.

FX special effects are a powerful “micro” language to work with. Simple functions & operators offer a unique way to
access & manipulate image data. The fx() method applies a FX expression, and generates a new Image instance.

For example, when given image enhancement.jpg:

We can create a custom DIY filter that will turn the image black & white, except colors with a hue between 195° &
252°:

from wand.image import Image

fx_filter='(hue > 0.55 && hue < 0.7) ? u : lightness'

with Image(filename='enhancement.jpg') as img:
with img.fx(fx_filter) as filtered_img:

filtered_img.save(filename='enhancement-fx.jpg')

38 Chapter 3. User’s guide

http://www.imagemagick.org/script/fx.php

Wand Documentation, Release 0.5.4

3.8.4 Gamma

New in version 0.4.1.

Gamma correction allows you to adjust the luminance of an image. Resulting pixels are defined as pixel^(1/
gamma). The value of gamma is typically between 0.8 & 2.3 range, and value of 1.0 will not affect the resulting
image.

The level() method can also adjust gamma value.

For example, when given image enhancement.jpg:

3.8. Color Enhancement 39

Wand Documentation, Release 0.5.4

We can step through 4 pre-configured gamma correction values with the following:

from wand.image import Image

with Image(filename='enhancement.jpg') as img_src:
for Y in [0.8, 0.9, 1.33, 1.66]:

with Image(img_src) as img_cpy:
img_cpy.gamma(Y)

40 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.8. Color Enhancement 41

Wand Documentation, Release 0.5.4

3.8.5 Level

New in version 0.4.1.

Black & white boundaries of an image can be controlled with level() method. Similar to the gamma() method,
mid-point levels can be adjusted with the gamma keyword argument.

The black and white point arguments are expecting values between 0.0 & 1.0 which represent percentages.

For example, when given image enhancement.jpg:

We can adjust the level range between 20% & 90% with slight mid-range increase:

from wand.image import Image

with Image(filename='enhancement.jpg') as img:
img.level(0.2, 0.9, gamma=1.1)
img.save(filename='enhancement-level.jpg')

42 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.9 Distortion

ImageMagick provides several ways to distort an image by applying various transformations against user-supplied
arguments. In Wand, the method Image.distort is used, and follows a basic function signature of:

with Image(...) as img:
img.distort(method, arguments)

Where method is a string provided by DISTORTION_METHODS, and arguments is a list of doubles. Each
method parses the arguments list differently. For example:

Arc can have a minimum of 1 argument
img.distort('arc', (degree,))
Affine 3-point will require 6 arguments
points = (x1, y1, x2, y2,

x3, y3, x4, y4,
x5, y5, x6, y6)

img.distort('affine', points)

A more complete & detailed overview on distortion can be found in Distorting Images usage article by Anthony
Thyssen.

3.9.1 Controlling Resulting Images

Virtual Pixels

When performing distortion on raster images, the resulting image often includes pixels that are outside original bound-
ing raster. These regions are referred to as vertical pixels, and can be controlled by setting Image.virtual_pixel
to any value defined in VIRTUAL_PIXEL_METHOD.

3.9. Distortion 43

https://www.imagemagick.org/Usage/distorts/

Wand Documentation, Release 0.5.4

Virtual pixels set to 'transparent', 'black', or 'white' are the most common, but many users prefer use
the existing background color.

with Image(filename='rose:') as img:
img.resize(140, 92)
img.background_color = img[70, 46]
img.virtual_pixel = 'background'
img.distort('arc', (60,))

Other virtual_pixel values can create special effects.

44 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

Virtual Pixel Example

dither

edge

mirror

random

tile

Matte Color

Some distortion transitions can not be calculated in the virtual-pixel space. Either being invalid, or NaN (not-a-
number). You can define how such a pixel should be represented by setting the Image.matte_color property.

3.9. Distortion 45

Wand Documentation, Release 0.5.4

from wand.color import Color
from wand.image import Image

with Image(filename='rose:') as img:
img.resize(140, 92)
img.matte_color = Color('ORANGE')
img.virtual_pixel = 'tile'
args = (0, 0, 30, 60, 140, 0, 110, 60,

0, 92, 2, 90, 140, 92, 138, 90)
img.distort('perspective', args)

Rendering Size

Setting the 'distort:viewport' artifact allows you to define the size, and offset of the resulting image:

img.artifacts['distort:viewport'] = '300x200+50+50'

Setting the 'distort:scale' artifact will resizing the final image:

img.artifacts['distort:scale'] = '75%'

3.9.2 Scale Rotate Translate

A more common form of distortion, the method 'scale_rotate_translate' can be controlled by the total
number of arguments.

The total arguments dictate the following order.

Total Arguments Argument Order
1 Angle
2 Scale, Angle
3 X, Y, Angle
4 X, Y, Scale, Angle
5 X, Y, ScaleX, ScaleY, Angle
6 X, Y, Scale, Angle, NewX, NewY
7 X, Y, ScaleX, ScaleY, Angle, NewX, NewY

For example. . .

A single argument would be treated as an angle:

from wand.color import Color
from wand.image import Image

(continues on next page)

46 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

(continued from previous page)

with Image(filename='rose:') as img:
img.resize(140, 92)
img.background_color = Color('skyblue')
img.virtual_pixel = 'background'
angle = 90.0
img.distort('scale_rotate_translate', (angle,))

Two arguments would be treated as a scale & angle:

with Image(filename='rose:') as img:
img.resize(140, 92)
img.background_color = Color('skyblue')
img.virtual_pixel = 'background'
angle = 90.0
scale = 0.5
img.distort('scale_rotate_translate', (scale, angle,))

And three arguments would describe the origin of rotation:

with Image(filename='rose:') as img:
img.resize(140, 92)
img.background_color = Color('skyblue')
img.virtual_pixel = 'background'
x = 80
y = 60
angle = 90.0
img.distort('scale_rotate_translate', (x, y, angle,))

. . . and so forth.

3.9. Distortion 47

Wand Documentation, Release 0.5.4

3.9.3 Perspective

Perspective distortion requires 4 pairs of points which is a total of 16 doubles. The order of the arguments are
groups of source & destination coordinate pairs.

src1$_x$, src1$_y$, dst1$_x$, dst1$_y$,
src2$_x$, src2$_y$, dst2$_x$, dst2$_y$,
src3$_x$, src3$_y$, dst3$_x$, dst3$_y$,
src4$_x$, src4$_y$, dst4$_x$, dst4$_y$

For example:

from itertools import chain
from wand.color import Color
from wand.image import Image

with Image(filename='rose:') as img:
img.resize(140, 92)
img.background_color = Color('skyblue')
img.virtual_pixel = 'background'
source_points = (

(0, 0),
(140, 0),
(0, 92),
(140, 92)

)
destination_points = (

(14, 4.6),
(126.9, 9.2),
(0, 92),
(140, 92)

)
order = chain.from_iterable(zip(source_points, destination_points))
arguments = list(chain.from_iterable(order))
img.distort('perspective', arguments)

3.9.4 Affine

Affine distortion performs a shear operation. The arguments are similar to perspective, but only need a pair of 3 points,
or 12 real numbers.

src1$_x$, src1$_y$, dst1$_x$, dst1$_y$,
src2$_x$, src2$_y$, dst2$_x$, dst2$_y$,
src3$_x$, src3$_y$, dst3$_x$, dst3$_y$

For example:

48 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

from wand.color import Color
from wand.image import Image

with Image(filename='rose:') as img:
img.resize(140, 92)
img.background_color = Color('skyblue')
img.virtual_pixel = 'background'
args = (

10, 10, 15, 15, # Point 1: (10, 10) => (15, 15)
139, 0, 100, 20, # Point 2: (139, 0) => (100, 20)
0, 92, 50, 80 # Point 3: (0, 92) => (50, 80)

)
img.distort('affine', args)

3.9.5 Affine Projection

Affine projection is identical to Scale Rotate Translate, but requires exactly 6 real numbers for the distortion arguments.

Scale$_x$, Rotate$_x$, Rotate$_y$, Scale$_y$, Translate$_x$, Translate$_y$

For example:

from collections import namedtuple
from wand.color import Color
from wand.image import Image

Point = namedtuple('Point', ['x', 'y'])

with Image(filename='rose:') as img:
img.resize(140, 92)
img.background_color = Color('skyblue')
img.virtual_pixel = 'background'
rotate = Point(0.1, 0)
scale = Point(0.7, 0.6)
translate = Point(5, 5)
args = (

scale.x, rotate.x, rotate.y,
scale.y, translate.x, translate.y

)
img.distort('affine_projection', args)

3.9. Distortion 49

Wand Documentation, Release 0.5.4

3.10 Drawing

New in version 0.3.0.

The wand.drawing module provides some basic drawing functions. wand.drawing.Drawing object buffers
instructions for drawing shapes into images, and then it can draw these shapes into zero or more images.

It’s also callable and takes an Image object:

from wand.drawing import Drawing
from wand.image import Image

with Drawing() as draw:
does something with ``draw`` object,
and then...
with Image(filename='wandtests/assets/beach.jpg') as image:

draw(image)

3.10.1 Arc

New in version 0.4.0.

Arcs can be drawn by using arc() method. You’ll need to define three pairs of (x, y) coordinates. First & second
pair of coordinates will be the minimum bounding rectangle, and the last pair define the starting & ending degree.

An example:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
draw.stroke_color = Color('black')
draw.stroke_width = 2
draw.fill_color = Color('white')
draw.arc((25, 25), # Stating point

(75, 75), # Ending point
(135,-45)) # From bottom left around to top right

with Image(width=100,
height=100,
background=Color('lightblue')) as img:

draw.draw(img)
img.save(filename='draw-arc.gif')

50 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.10.2 Bezier

New in version 0.4.0.

You can draw bezier curves using bezier() method. This method requires at least four points to determine a bezier
curve. Given as a list of (x, y) coordinates. The first & last pair of coordinates are treated as start & end, and the
second & third pair of coordinates act as controls.

For example:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
draw.stroke_color = Color('black')
draw.stroke_width = 2
draw.fill_color = Color('white')
points = [(10,50), # Start point

(50,10), # First control
(50,90), # Second control
(90,50)] # End point

draw.bezier(points)
with Image(width=100,

height=100,
background=Color('lightblue')) as image:

draw(image)

Control width & color of curve with the drawing properties:

• stroke_color

• stroke_width

3.10.3 Circle

New in version 0.4.0.

You can draw circles using circle() method. Circles are drawn by defining two pairs of (x, y) coordinates. First
coordinate for the center “origin” point, and a second pair for the outer perimeter. For example, the following
code draws a circle in the middle of the image:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
draw.stroke_color = Color('black')
draw.stroke_width = 2
draw.fill_color = Color('white')
draw.circle((50, 50), # Center point

(25, 25)) # Perimeter point
with Image(width=100, height=100, background=Color('lightblue')) as image:

draw(image)

3.10. Drawing 51

Wand Documentation, Release 0.5.4

3.10.4 Color & Matte

New in version 0.4.0.

You can draw with colors directly on the coordinate system of an image. Define which color to set by setting
fill_color. The behavior of color() is controlled by setting one of PAINT_METHOD_TYPES paint meth-
ods.

• 'point' alters a single pixel.

• 'replace' swaps on color for another. Threshold is influenced by fuzz.

• 'floodfill' fills area of a color influenced by fuzz.

• 'filltoborder' fills area of a color until border defined by border_color.

• 'reset' replaces the whole image to a single color.

Example fill all to green boarder:

from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
draw.border_color = Color('green')
draw.fill_color = Color('blue')
draw.color(15, 25, 'filltoborder')

The matte() method is identical to the color() method above, but alters the alpha channel of the color area
selected. Colors can be manipulated, but not replaced.

with Drawing() as draw:
draw.fill_color = None # or Color('none')
draw.matte(15, 25, 'floodfill')

3.10.5 Composite

New in version 0.4.0.

Similar to composite_channel(), this composite() method will render a given image on top of the draw-
ing subject image following the COMPOSITE_OPERATORS options. An compositing image must be given with a
destination top, left, width, and height values.

from wand.image import Image, COMPOSITE_OPERATORS
from wand.drawing import Drawing
from wand.display import display

wizard = Image(filename='wizard:')
rose = Image(filename='rose:')

for o in COMPOSITE_OPERATORS:
w = wizard.clone()
r = rose.clone()
with Drawing() as draw:
draw.composite(operator=o, left=175, top=250,

width=r.width, height=r.height, image=r)
draw(w)
display(w)

52 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.10.6 Ellipse

New in version 0.4.0.

Ellipse can be drawn by using the ellipse() method. Like drawing circles, the ellipse requires a origin point,
however, a pair of (x, y) radius are used in relationship to the origin coordinate. By default a complete “closed”
ellipse is drawn. To draw a partial ellipse, provide a pair of starting & ending degrees as the third parameter.

An example of a full ellipse:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
draw.stroke_color = Color('black')
draw.stroke_width = 2
draw.fill_color = Color('white')
draw.ellipse((50, 50), # Origin (center) point

(40, 20)) # 80px wide, and 40px tall
with Image(width=100, height=100, background=Color('lightblue')) as image:

draw(image)

Same example as above, but with a half-partial ellipse defined by the third parameter:

draw.ellipse((50, 50), # Origin (center) point
(40, 20), # 80px wide, and 40px tall
(90,-90)) # Draw half of ellipse from bottom to top

3.10.7 Lines

You can draw lines using line() method. It simply takes two (x, y) coordinates for start and end of a line. For
example, the following code draws a diagonal line into the image:

draw.line((0, 0), image.size)
draw(image)

Or you can turn this diagonal line upside down:

draw.line((0, image.height), (image.width, 0))
draw(image)

The line color is determined by fill_color property, and you can change this of course. The following code draws
a red diagonal line into the image:

from wand.color import Color

with Color('red') as color:
draw.fill_color = color
draw.line((0, 0), image.size)
draw(image)

3.10. Drawing 53

Wand Documentation, Release 0.5.4

3.10.8 Paths

New in version 0.4.0.

Paths can be drawn by using any collection of path functions between path_start() and path_finish()
methods. The available path functions are:

• path_close() draws a path from last point to first.

• path_curve() draws a cubic bezier curve.

• path_curve_to_quadratic_bezier() draws a quadratic bezier curve.

• path_elliptic_arc() draws an elliptical arc.

• path_horizontal_line() draws a horizontal line.

• path_line() draws a line path.

• path_move() adjust current point without drawing.

• path_vertical_line() draws a vertical line.

Each path method expects a destination point, and will draw from the current point to the new point. The destination
point will become the new current point for the next applied path method. Destination points are given in the form of
(x, y) coordinates to the to parameter, and can by relative or absolute to the current point by setting the relative
flag. The path_curve() and path_curve_to_quadratic_bezier() expect additional control points,
and can complement previous drawn curves by setting a smooth flag. When the smooth flag is set to True the first
control point is assumed to be the reflection of the last defined control point.

For example:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
draw.stroke_width = 2
draw.stroke_color = Color('black')
draw.fill_color = Color('white')
draw.path_start()
Start middle-left
draw.path_move(to=(10, 50))
Curve accross top-left to center
draw.path_curve(to=(40, 0),

controls=[(10, -40), (30,-40)],
relative=True)

Continue curve accross bottom-right
draw.path_curve(to=(40, 0),

controls=(30, 40),
smooth=True,
relative=True)

Line to top-right
draw.path_vertical_line(10)
Diagonal line to bottom-left
draw.path_line(to=(10, 90))
Close first & last points
draw.path_close()
draw.path_finish()
with Image(width=100, height=100, background=Color('lightblue')) as image:

draw(image)

54 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.10.9 Point

New in version 0.4.0.

You can draw points by using point() method. It simply takes two x, y arguments for the point coordinate.

The following example will draw points following a math function across a given image:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color
import math

with Drawing() as draw:
for x in xrange(0, 100):

y = math.tan(x) * 4
draw.point(x, y + 50)

with Image(width=100, height=100, background=Color('lightblue')) as image:
draw(image)

Color of the point can be defined by setting the following property

• fill_color

3.10.10 Polygon

New in version 0.4.0.

Complex shapes can be created with the polygon() method. You can draw a polygon by given this method a list of
points. Stroke line will automatically close between first & last point.

For example, the following code will draw a triangle into the image:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
draw.stroke_width = 2
draw.stroke_color = Color('black')
draw.fill_color = Color('white')
points = [(25, 25), (75, 50), (25, 75)]
draw.polygon(points)
with Image(width=100, height=100, background=Color('lightblue')) as image:

draw(image)

Control the fill & stroke with the following properties:

• stroke_color

• stroke_dash_array

• stroke_dash_offset

3.10. Drawing 55

Wand Documentation, Release 0.5.4

• stroke_line_cap

• stroke_line_join

• stroke_miter_limit

• stroke_opacity

• stroke_width

• fill_color

• fill_opacity

• fill_rule

3.10.11 Polyline

New in version 0.4.0.

Identical to polygon(), except polyline() will not close the stroke line between the first & last point.

For example, the following code will draw a two line path on the image:

from wand.image import Image
from wand.drawing import Drawing
from wand.color import Color

with Drawing() as draw:
draw.stroke_width = 2
draw.stroke_color = Color('black')
draw.fill_color = Color('white')
points = [(25, 25), (75, 50), (25, 75)]
draw.polyline(points)
with Image(width=100, height=100, background=Color('lightblue')) as image:

draw(image)

Control the fill & stroke with the following properties:

• stroke_color

• stroke_dash_array

• stroke_dash_offset

• stroke_line_cap

• stroke_line_join

• stroke_miter_limit

• stroke_opacity

• stroke_width

• fill_color

• fill_opacity

• fill_rule

56 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.10.12 Push & Pop

New in version 0.4.0.

When working with complex vector graphics, you can use ImageMagick’s internal graphic-context stack to
manage different styles & operations. The methods push(), push_clip_path(), push_defs(), and
push_pattern() are used to mark the beginning of a sub-routine. The clip path & pattern meth-
ods take a name based identifier argument, and can be referenced at a latter point with clip_path, or
set_fill_pattern_url() / set_stroke_pattern_url() respectively. With stack management, pop()
is used to mark the end of a sub-routine, and return the graphical context to its pervious state before push() was
invoked. Methods pop_clip_path(), pop_defs(), and pop_pattern() exist to match there pop counter-
parts.

from wand.color import Color
from wand.image import Image
from wand.drawing import Drawing
from wand.compat import nested
from math import cos, pi, sin

with nested(Color('lightblue'),
Color('transparent'),
Drawing()) as (bg, fg, draw):

draw.stroke_width = 3
draw.fill_color = fg
for degree in range(0, 360, 15):

draw.push() # Grow stack
draw.stroke_color = Color('hsl({0}%, 100%, 50%)'.format(degree * 100 / 360))
t = degree / 180.0 * pi
x = 35 * cos(t) + 50
y = 35 * sin(t) + 50
draw.line((50, 50), (x, y))
draw.pop() # Restore stack

with Image(width=100, height=100, background=Color('lightblue')) as img:
draw(img)

3.10.13 Rectangles

New in version 0.3.6.

Changed in version 0.4.0.

If you want to draw rectangles use rectangle() method. It takes left/top coordinate, and right/bottom
coordinate, or width and height. For example, the following code draws a square on the image:

draw.rectangle(left=10, top=10, right=40, bottom=40)
draw(image)

Or using width and height instead of right and bottom:

draw.rectangle(left=10, top=10, width=30, height=30)
draw(image)

Support for rounded corners was added in version 0.4.0. The radius argument sets corner rounding.

3.10. Drawing 57

Wand Documentation, Release 0.5.4

draw.rectangle(left=10, top=10, width=30, height=30, radius=5)
draw(image)

Both horizontal & vertical can be set independently with xradius & yradius respectively.

draw.rectangle(left=10, top=10, width=30, height=30, xradius=5, yradius=3)
draw(image)

Note that the stoke and the fill are determined by the following properties:

• stroke_color

• stroke_dash_array

• stroke_dash_offset

• stroke_line_cap

• stroke_line_join

• stroke_miter_limit

• stroke_opacity

• stroke_width

• fill_color

• fill_opacity

• fill_rule

3.10.14 Texts

Drawing object can write texts as well using its text() method. It takes x and y coordinates to be drawn and a
string to write:

draw.font = 'wandtests/assets/League_Gothic.otf'
draw.font_size = 40
draw.text(image.width / 2, image.height / 2, 'Hello, world!')
draw(image)

As the above code shows you can adjust several settings before writing texts:

• font

• font_family

• font_resolution

• font_size

• font_stretch

• font_style

• font_weight

• gravity

• text_alignment

• text_antialias

• text_decoration

58 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

• text_direction

• text_interline_spacing

• text_interword_spacing

• text_kerning

• text_under_color

3.10.15 Word Wrapping

The Drawing class, by nature, doesn’t implement any form of word-wrapping, and users of the wand library would
be responsible for implementing this behavior unique to their business requirements.

ImageMagick’s caption: coder does offer a word-wrapping solution with Image.caption() method, but
Python’s textwrap is a little more sophisticated.

from textwrap import wrap
from wand.color import Color
from wand.drawing import Drawing
from wand.image import Image

def draw_roi(contxt, roi_width, roi_height):
"""Let's draw a blue box so we can identify what
our region of intrest is."""
ctx.push()
ctx.stroke_color = Color('BLUE')
ctx.fill_color = Color('TRANSPARENT')
ctx.rectangle(left=75, top=255, width=roi_width, height=roi_height)
ctx.pop()

def word_wrap(image, ctx, text, roi_width, roi_height):
"""Break long text to multiple lines, and reduce point size
until all text fits within a bounding box."""
mutable_message = text
iteration_attempts = 100

def eval_metrics(txt):
"""Quick helper function to calculate width/height of text."""
metrics = ctx.get_font_metrics(image, txt, True)
return (metrics.text_width, metrics.text_height)

def shrink_text():
"""Reduce point-size & restore original text"""
ctx.font_size = ctx.font_size - 0.75
mutable_message = text

while ctx.font_size > 0 and iteration_attempts:
iteration_attempts -= 1
width, height = eval_metrics(mutable_message)
if height > roi_height:

shrink_text()
elif width > roi_width:

columns = len(mutable_message)
while columns > 0:

(continues on next page)

3.10. Drawing 59

https://docs.python.org/3/library/textwrap.html#module-textwrap

Wand Documentation, Release 0.5.4

(continued from previous page)

columns -= 1
mutable_message = '\n'.join(wrap(mutable_message, columns))
wrapped_width, _ = eval_metrics(mutable_message)
if wrapped_width <= roi_width:

break
if columns < 1:

shrink_text()
else:

break
if iteration_attempts < 1:

raise RuntimeError("Unable to calculate word_wrap for " + text)
return mutable_message

message = """This is some really long sentence with the
word "Mississippi" in it."""

ROI_SIDE = 175

with Image(filename='logo:') as img:
with Drawing() as ctx:

draw_roi(ctx, ROI_SIDE, ROI_SIDE)
Set the font style
ctx.fill_color = Color('RED')
ctx.font_family = 'Times New Roman'
ctx.font_size = 32
mutable_message = word_wrap(img,

ctx,
message,
ROI_SIDE,
ROI_SIDE)

ctx.text(75, 275, mutable_message)
ctx.draw(img)
img.save(filename='draw-word-wrap.png')

60 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.11 Reading EXIF

New in version 0.3.0.

Image.metadata contains metadata of the image including EXIF. These are prefixed by 'exif:' e.g.
'exif:ExifVersion', 'exif:Flash'.

Here’s a straightforward example to access EXIF of an image:

exif = {}
with Image(filename='wandtests/assets/beach.jpg') as image:

exif.update((k[5:], v) for k, v in image.metadata.items()
if k.startswith('exif:'))

Note: You can’t write into Image.metadata.

3.11.1 Image Profiles

Although wand provides a way to quickly access profile attributes through Image.metadata, ImageMagick is not
a tag editor. Users are expected to export the profile payload, modify as needed, and import the payload back into the
source image. Payload are byte-arrays, and should be treated as binary blobs.

3.11. Reading EXIF 61

Wand Documentation, Release 0.5.4

Image profiles can be imported, extracted, and deleted with Image.profiles dictionary:

with Image(filename='wandtests/assets/beach.jpg') as image:
Extract EXIF payload
if 'EXIF' in image.profiles:

exif_binary = image.profiles['EXIF']
Import/replace ICC payload
with open('color_profile.icc', 'rb') as icc:

image.profiles['ICC'] = icc.read()
Remove XMP payload
del image.profiles['XMP']

Note: Each write operation on any profile type requires the raster image-data to be re-encoded. On lossy formats,
such encoding operations can be considered a generation loss.

3.12 Layers

3.12.1 Coalesce Layers

New in version 0.5.0.

When reading animations that have already been optimized, be sure to call coalesce() before performing any
additional operations. This is especially important as the MagickWand internal iterator state may be pointing to the
last frame read into the image stack, and with optimized images, this is usually a sub-image only holding a frame
delta.

>>> with Image(filename='layers-optmized.gif') as img:
... img.coalesce()
... # ... do work ...

3.12.2 Optimizing Layers

New in version 0.5.0.

A few optimization techniques exist when working with animated graphics. For example, a GIF image would have
a rather large file size if every frame requires the full image to be redrawn. Let’s take a look at the effects of
optimize_layers(), and optimize_transparency().

To start, we can quickly create an animated gif.

from wand.color import Color
from wand.image import Image

with Image(width=100, height=100, pseudo='pattern:crosshatch') as canvas:
canvas.negate()
for offset in range(20, 80, 10):

with canvas.clone() as frame:
with Drawing() as ctx:

ctx.fill_color = Color('red')
ctx.stroke_color = Color('black')
ctx.circle((offset, offset), (offset+5, offset+5))
ctx.draw(frame)

(continues on next page)

62 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

(continued from previous page)

canvas.sequence.append(frame)
canvas.save(filename='layers.gif')

Another quick helper method to allow us to view/debug each frame.

def debug_layers(image, output):
print('Debugging to file', output)
with Image(image) as img:

img.background_color = Color('lime')
for index, frame in enumerate(img.sequence):

print('Frame {0} size : {1} page: {2}'.format(index,
frame.size,
frame.page))

img.concat(stacked=True)
img.save(filename=output)

We can debug the previously created layers.gif by running the following:

>>> with Image(filename='layers.gif') as img:
... debug_layers(img, 'layers-expanded.png')
Debugging to file layers-expanded.png
Frame 0 size : (100, 100) page: (100, 100, 0, 0)
Frame 1 size : (100, 100) page: (100, 100, 0, 0)
Frame 2 size : (100, 100) page: (100, 100, 0, 0)
Frame 3 size : (100, 100) page: (100, 100, 0, 0)
Frame 4 size : (100, 100) page: (100, 100, 0, 0)
Frame 5 size : (100, 100) page: (100, 100, 0, 0)
Frame 6 size : (100, 100) page: (100, 100, 0, 0)

3.12. Layers 63

Wand Documentation, Release 0.5.4

64 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

The moving circle is the only thing that changes between each frame, so we can optimize by having each frame only
contain the delta.

>>> with Image(filename='layers.gif') as img:
... img.optimize_layers()
... debug_layers(img, 'layers-optmized-layers.png')
Debugging to file layers-optmized-layers.png
Frame 0 size : (100, 100) page: (100, 100, 0, 0)
Frame 1 size : (17, 17) page: (100, 100, 12, 12)
Frame 2 size : (26, 27) page: (100, 100, 12, 12)
Frame 3 size : (26, 27) page: (100, 100, 23, 22)
Frame 4 size : (26, 27) page: (100, 100, 32, 32)
Frame 5 size : (26, 27) page: (100, 100, 43, 42)
Frame 6 size : (26, 27) page: (100, 100, 52, 52)

Notice each frame after the first has a reduce size & page x/y offset. Contacting each frame shows only the minimum
bounding region covering the pixel changes across each previous frame. Note: the lime-green background is only there
for a visual cue one the website, and has not special meaning outside of “no-data here.”

3.12.3 Optimizing Transparency

New in version 0.5.0.

Following the above examples, we can also optimize by forcing pixels transparent if they are unchanged since the
previous frame.

>>> with Image(filename='layers.gif') as img:
... img.optimize_transparency()
... debug_layers(img, 'layers-optmized-transparent.png')
Debugging to file layers-optmized-transparent.png
Frame 0 size : (100, 100) page: (100, 100, 0, 0)
Frame 1 size : (100, 100) page: (100, 100, 0, 0)
Frame 2 size : (100, 100) page: (100, 100, 0, 0)

(continues on next page)

3.12. Layers 65

Wand Documentation, Release 0.5.4

(continued from previous page)

Frame 3 size : (100, 100) page: (100, 100, 0, 0)
Frame 4 size : (100, 100) page: (100, 100, 0, 0)
Frame 5 size : (100, 100) page: (100, 100, 0, 0)
Frame 6 size : (100, 100) page: (100, 100, 0, 0)

66 Chapter 3. User’s guide

Wand Documentation, Release 0.5.4

3.12. Layers 67

Wand Documentation, Release 0.5.4

Notice both the size of each frame, and the page offset are unchanged. This technique only really saves if the subject
already contains transparency color channels, and so most modern gif animations would not benefit from this method.

Naturally, applying both layer & transparency optimization will demonstrate both effects.

>>> with Image(filename='layers.gif') as img:
... img.optimize_layers()
... img.optimize_transparency()
... debug_layers(img, 'layers-optmized-layers-transparent.png')
Debugging to file layers-optmized-layers-transparent.png
Frame 0 size : (100, 100) page: (100, 100, 0, 0)
Frame 1 size : (17, 17) page: (100, 100, 12, 12)
Frame 2 size : (26, 27) page: (100, 100, 12, 12)
Frame 3 size : (26, 27) page: (100, 100, 23, 22)
Frame 4 size : (26, 27) page: (100, 100, 32, 32)
Frame 5 size : (26, 27) page: (100, 100, 43, 42)
Frame 6 size : (26, 27) page: (100, 100, 52, 52)

Note: Lime-green background added for visibility cue.

3.13 Sequence

Note: The image sequence-animation.gif used in this docs has been released into the public domain by its
author, C6541 at Wikipedia project. This applies worldwide. (Source)

New in version 0.3.0.

Some images may actually consist of two or more images. For example, animated image/gif images consist of
multiple frames. Some image/ico images have different sizes of icons.

68 Chapter 3. User’s guide

http://en.wikipedia.org/wiki/User:C6541
http://en.wikipedia.org/wiki/
http://commons.wikimedia.org/wiki/File:1.3-B.gif

Wand Documentation, Release 0.5.4

For example, the above image sequence-animation.gif consists of the following frames (actually it has 60
frames, but we sample only few frames to show here):

3.13.1 sequence is a Sequence

If we open this image, Image object has sequence. It’s a list-like object that maintain its all frames.

For example, len() for this returns the number of frames:

>>> from wand.image import Image
>>> with Image(filename='sequence-animation.gif') as image:
... len(image.sequence)
...
60

You can get an item by index from sequence:

>>> with Image(filename='sequence-animation.gif') as image:
... image.sequence[0]
...
<wand.sequence.SingleImage: ed84c1b (256x256)>

Or slice it:

>>> with Image(filename='sequence-animation.gif') as image:
... image.sequence[5:10]
...
[<wand.sequence.SingleImage: 0f49491 (256x256)>,
<wand.sequence.SingleImage: 8eba0a5 (256x256)>,
<wand.sequence.SingleImage: 98c10fa (256x256)>,
<wand.sequence.SingleImage: b893194 (256x256)>,
<wand.sequence.SingleImage: 181ce21 (256x256)>]

3.13.2 Image versus SingleImage

Note that each item of sequence is a SingleImage instance, not Image.

Image is a container that directly represents image files like sequence-animation.gif, and SingleImage
is a single image that represents frames in animations or sizes in image/ico files.

They both inherit BaseImage, the common abstract class. They share the most of available operations and properties
like resize() and size, but some are not. For example, save() and mimetype are only provided by Image.
delay and index are only available for SingleImage.

In most cases, images don’t have multiple images, so it’s okay if you think that Image and SingleImage are the
same, but be careful when you deal with animated image/gif files or image/ico files that contain multiple icons.

3.13.3 Manipulating SingleImage

When working with sequence, it’s important to remember that each instance of SingleImage holds a copy of
image data from the stack. Altering the copied data will not automatically sync back to the original image-stack.

3.13. Sequence 69

https://docs.python.org/3/library/functions.html#len

Wand Documentation, Release 0.5.4

>>> with Image(filename='animation.gif') as image:
... # Changes on SingleImage are invisible to `image` container.
... image.sequence[2].negate()
... image.save(filename='output.gif') # Changes ignored.

If you intended to alter a SingleImage, and have changes synchronized back to the parent image-stack, use an
additional with-statement context manager.

>>> with Image(filename='animation.gif') as image:
... # Changes on SingleImage are sync-ed after context manager closes.
... with image.sequence[2] as frame:
... frame.negate()
... image.save(filename='output.gif') # Changes applied.

3.14 Resource management

See also:

wand.resource — Global resource management There is the global resource to manage in MagickWand API.
This module implements automatic global resource management through reference counting.

Objects Wand provides are resources to be managed. It has to be closed (destroyed) after using like file or database
connection. You can deal with it using with very easily and explicitly:

with Image(filename='') as img:
deal with img...

Or you can call its destroy() (or close() if it is an Image instance) method manually:

try:
img = Image(filename='')
deal with img...

finally:
img.destroy()

Note: It also implements the destructor that invokes destroy(), and if your program runs on CPython (which does
reference counting instead of ordinary garbage collection) most of resources are automatically deallocated.

However it’s just depending on CPython’s implementation detail of memory management, so it’s not a good idea. If
your program runs on PyPy (which implements garbage collector) for example, invocation time of destructors is not
determined, so the program would be broken.

3.15 Running tests

Wand has unit tests and regression tests. It can be run using setup.py script:

$ python setup.py test

It uses pytest as its testing library. The above command will automatically install pytest as well if it’s not installed yet.

Or you can manually install pytest and then use py.test command. It provides more options:

70 Chapter 3. User’s guide

https://docs.python.org/3/reference/compound_stmts.html#with
http://pytest.org/

Wand Documentation, Release 0.5.4

$ pip install pytest
$ py.test

3.15.1 Skipping tests

There are some time-consuming tests. You can skip these tests using --skip-slow option:

$ py.test --skip-slow

Be default, tests include regression testing for the PDF format. Test cases will fail if the system does not include
Ghostscript binaries. You can skip PDF dependent tests with --skip-pdf option:

$ py.test --skip-pdf

You can run only tests you want using -k option.

$ py.test -k image

3.15.2 Using tox

Wand should be compatible with various Python implementations including CPython 2.6, 2.7, PyPy. tox is a testing
software that helps Python packages to test on various Python implementations at a time.

It can be installed using pip:

$ pip install tox

If you type just tox at Wand directory it will be tested on multiple Python interpreters:

$ tox
GLOB sdist-make: /Users/emcconville/Desktop/wand/setup.py
py26 create: /Users/emcconville/Desktop/wand/.tox/py26
py26 installdeps: pytest
py26 sdist-inst: /Users/emcconville/Desktop/wand/.tox/dist/Wand-0.2.2.zip
py26 runtests: commands[0]
...

You can use a double -- to pass options to pytest:

$ tox -- -k sequence

3.15.3 Continuous Integration

Travis CI automatically builds and tests every commit and pull request. The above banner image shows the current
status of Wand build. You can see the detail of the current status from the following URL:

https://travis-ci.org/emcconville/wand

3.15. Running tests 71

https://www.ghostscript.com
http://tox.testrun.org/
https://travis-ci.org/emcconville/wand
http://travis-ci.org/
https://travis-ci.org/emcconville/wand

Wand Documentation, Release 0.5.4

3.15.4 Code Coverage

Coveralls support tracking Wand’s test coverage. The above banner image shows the current status of Wand coverage.
You can see the details of the current status from the following URL:

https://coveralls.io/r/emcconville/wand

3.16 Roadmap

3.16.1 Very future versions

CFFI Wand will move to CFFI from ctypes.

PIL compatibility layer PIL has very long history and the most of Python projects still depend on it. We will work
on PIL compatibility layer using Wand. It will provide two ways to emulate PIL:

• Module-level compatibility which can be used by changing import:

try:
from wand.pilcompat import Image

except ImportError:
from PIL import Image

• Global monkeypatcher which changes sys.modules:

from wand.pilcompat.monkey import patch; patch()
import PIL.Image # it imports wand.pilcompat.Image module

CLI (covert command) to Wand compiler (#100) Primary interface of ImageMagick is convert command. It
provides a small parameter language, and many answers on the Web contain code using this. The problem is
that you can’t simply copy-and-paste these code to utilize Wand.

This feature is to make these CLI codes possible to be used with Wand.

3.17 Wand Changelog

3.17.1 0.5 series

Version 0.5.5

Unreleased.

Version 0.5.4

Released on May 25th, 2019.

• Rewrote libc library loader. [#409]

• Respect background paramater in Image.__init__() constructor. [#410]

• Fixed Drawing.get_font_metrics() not raising internal ImageMagick exception on rendering error.
[#411]

72 Chapter 3. User’s guide

https://coveralls.io/r/emcconville/wand
https://coveralls.io/
https://coveralls.io/r/emcconville/wand
https://docs.python.org/3/reference/simple_stmts.html#import
https://github.com/emcconville/wand/issues/100
https://github.com/emcconville/wand/issues/409
https://github.com/emcconville/wand/issues/410
https://github.com/emcconville/wand/issues/411

Wand Documentation, Release 0.5.4

• Fixed deleting image artifact value.

• Fixed offset memory calculation in Image.export_pixels() & Image.import_pixels() methods.
[#413]

• Added Image.auto_gamma() method.

• Added Image.auto_level() method.

• Added Image.border_color property.

• Added Image.brightness_contrast() method.

• Added Image.mode() method.

• Added Image.motion_blur() method.

• Added Image.oil_paint() method.

• Added Image.opaque_paint() method.

• Added Image.polaroid() method.

• Added Image.rendering_intent property.

• Added Image.rotational_blur() method.

• Added Image.scene property.

• Added Image.shear() method.

• Added Image.sigmoidal_contrast() method.

• Added Image.similarity() method.

• Added Image.stegano() method.

• Added Image.stereogram() class method.

• Added Image.texture() method.

• Added Image.thumbnail() method. [#357 by yoch]

• Added Image.ticks_per_second property.

Version 0.5.3

Released on April 20, 2019.

• Fixed alpha channel set to “on” & “off” values for ImageMagick-7. [#404]

• Updated Image.composite & Image.composite_channel to include optional arguments for com-
posite methods that require extra controls.

• Updated Image.composite & Image.composite_channel to include optional gravity argument.

• Support for numpy arrays. [#65]

– Added Image.from_array class method.

• Support color map / palette manipulation. [#403]

– Added Image.colors property.

– Added Image.color_map() method.

– Added Image.cycle_color_map() method.

• Support for highlight & lowlight has been added to Image.compare() method.

3.17. Wand Changelog 73

https://github.com/emcconville/wand/issues/413
https://github.com/emcconville/wand/issues/357
https://github.com/emcconville/wand/issues/404
https://github.com/emcconville/wand/issues/65
https://github.com/emcconville/wand/issues/403

Wand Documentation, Release 0.5.4

• Support for PEP-519 for objects implementing __fspath__, in encode_filename().

• Added Image.adaptive_blur() method.

• Added Image.adaptive_resize() method.

• Added Image.adaptive_sharpen() method.

• Added Image.adaptive_threshold() method.

• Added Image.black_threshold() method.

• Added Image.blue_shift() method.

• Added Image.charcoal() method.

• Added Image.color_matrix() method.

• Added Image.colorize() method.

• Added Image.fuzz property.

• Added Image.kurtosis property.

• Added Image.kurtosis_channel() method

• Added Image.maxima property.

• Added Image.mean property.

• Added Image.mean_channel() method

• Added Image.minima property.

• Added Image.noise() method.

• Added Image.range_channel() method

• Added Image.remap() method.

• Added Image.selective_blur() method.

• Added Image.skewness property.

• Added Image.sketch() method.

• Added Image.smush() method.

• Added Image.sparse_color() method.

• Added Image.splice() method.

• Added Image.spread() method.

• Added Image.standard_deviation property.

• Added Image.statistic() method.

• Added Image.tint() method.

Special thanks to Fred Weinhaus for helping test this release.

Version 0.5.2

Released on March 24, 2019.

• Import collections.abc explicitly. [#398 by Stefan Naumann]

• Fixed memory leak in HistogramDict. [#397]

74 Chapter 3. User’s guide

https://docs.python.org/3/library/collections.abc.html#module-collections.abc
https://github.com/emcconville/wand/issues/398
https://github.com/emcconville/wand/issues/397

Wand Documentation, Release 0.5.4

• Fixed compression & compression quality bug. [#202 & #278]

• Image.read() will raise WandRuntimeError if MagickReadImage() returns MagickFalse, but
does not emit exception. [#319]

• Added Image.implode() method.

• Added Image.vignette() method.

• Added Image.wave() method.

• Added Image.white_threshold() method.

• Added Image.blue_primary property.

• Added Image.green_primary property.

• Added Image.interlace_scheme property.

• Added Image.interpolate_method property.

• Added Image.red_primary property.

• Added Image.white_point property.

Version 0.5.1

Released on February 15, 2019.

• Added set pixel color via Image[x, y] = Color(‘. . . ’). [#105]

• Added limits helper dictionary to allows getting / setting ImageMagick’s resource-limit policies. [#97]

• Fixed segmentation violation for win32 & ImageMagick-7. [#389]

• Fixed AssertError by moving SingleImage sync behavior from destroy to context __exit__. [#388]

• Fixed memory leak in get_font_metrics. [#390]

• Added property setters for Color attributes.

• Added cyan, magenta, yellow, & black properties for CMYK Color instances.

• Color instance can be created from HSL values with from_hsl() class method.

• Added Image.compose property for identifying layer visibility.

• Added Image.profiles dictionary attribute. [#249]

• Moved collections.abc to wand.compat.abc for Python-3.8. [#394 by Tero Vuotila]

• Update wand.display to use Python3 compatible print() function. [#395 by Tero Vuotila]

Version 0.5.0

Released on January 1, 2019.

• Support for ImageMagick-7.

• Improved support for 32-bit systems.

• Improved support for non-Q16 libraries.

• Removed README.rst from setup.py’s data_files. [#336]

• Improved EXIF:ORIENTATION handling. [#364 by M. Skrzypek]

3.17. Wand Changelog 75

https://github.com/emcconville/wand/issues/202
https://github.com/emcconville/wand/issues/278
https://github.com/emcconville/wand/issues/319
https://github.com/emcconville/wand/issues/105
https://github.com/emcconville/wand/issues/97
https://github.com/emcconville/wand/issues/389
https://github.com/emcconville/wand/issues/388
https://github.com/emcconville/wand/issues/390
https://github.com/emcconville/wand/issues/249
https://docs.python.org/3/library/collections.abc.html#module-collections.abc
https://github.com/emcconville/wand/issues/394
https://docs.python.org/3/library/functions.html#print
https://github.com/emcconville/wand/issues/395
https://github.com/emcconville/wand/issues/336
https://github.com/emcconville/wand/issues/364

Wand Documentation, Release 0.5.4

• Tolerate failures while accessing wand.api. [#220 by Utkarsh Upadhyay]

• Added support for Image Artifacts through Image.artifacts. [#369]

• Added optional stroke color/width parameters for Font.

• Image layers support (#22)

– Added Image.coalesce() method.

– Added Image.deconstruct method.

– Added Image.dispose property.

– Added Image.optimize_layers() method.

– Added Image.optimize_transparency() method.

• Implemented __array_interface__() for NumPy [#65]

• Migrated the following methods & attributes from Image to BaseImage for a more uniformed code-base.

– Image.compression

– Image.format

– Image.auto_orient()

– Image.border()

– Image.contrast_stretch()

– Image.gamma()

– Image.level()

– Image.linear_stretch()

– Image.normalize()

– Image.strip()

– Image.transpose()

– Image.transverse()

– Image.trim()

• Added Image.clut() method.

• Added Image.concat() method. [#177]

• Added Image.deskew() method.

• Added Image.despeckle() method.

• Added Image.edge() method.

• Added Image.emboss() method. [#196]

• Added Image.enhance() method. [#132]

• Added Image.export_pixels() method.

• Added Image.import_pixels() method.

• Added Image.morphology() method. [#132]

• Added Image.posterize() method.

• Added Image.shade() method.

76 Chapter 3. User’s guide

https://github.com/emcconville/wand/issues/220
https://github.com/emcconville/wand/issues/369
https://github.com/emcconville/wand/issues/22
https://github.com/emcconville/wand/issues/65
https://github.com/emcconville/wand/issues/177
https://github.com/emcconville/wand/issues/196
https://github.com/emcconville/wand/issues/132
https://github.com/emcconville/wand/issues/132

Wand Documentation, Release 0.5.4

• Added Image.shadow() method.

• Added Image.sharpen() method. [#132]

• Added Image.shave() method.

• Added Image.unique_colors() method.

• Method Drawing.draw() now accepts BaseImage for folks extended classes.

• Added Image.loop property. [#227]

• Fixed SingleImage.delay property. [#153]

• Attribute Image.font_antialias has been deprecated in favor of Image.antialias. [#218]

• Fixed ordering of COMPRESSION_TYPES based on ImageMagick version. [#309]

• Fixed drawing on SingleImage. [#289]

• Fixed wrapping issue for larger offsets when using gravity kwarg in Image.crop() method. [#367]

3.17.2 0.4 series

Version 0.4.5

Released on November 12, 2018.

• Improve library searching when MAGICK_HOME environment variable is set. [#320 by Chase Anderson]

• Fixed misleading TypeError: object of type ‘NoneType’ has no len() during destroy routines. [#346 by Carey
Metcalfe]

• Added Image.blur() method (MagickBlurImage()). [#311 by Alexander Karpinsky]

• Added Image.extent() method (MagickExtentImage()). [#233 by Jae-Myoung Yu]

• Added Image.resample() method (MagickResampleImage()). [#244 by Zio Tibia]

Version 0.4.4

Released on October 22, 2016.

• Added BaseError, BaseWarning, and BaseFatalError, base classes for domains. [#292]

• Fixed TypeError during parsing version caused by format change of ImageMagick version string (introduced
by 6.9.6.2). [#310, Debian bug report #841548]

• Properly fixed again memory-leak when accessing images constructed in Image.sequence[]. It had still
leaked memory in the case an image is not closed using with but manual wand.resource.Resource.
destroy()/wand.image.Image.close() method call. [#237]

Version 0.4.3

Released on June 1, 2016.

• Fixed repr() for empty Image objects. [#265]

• Added Image.compare() method (MagickCompareImages()). [#238, #268 by Gyusun Yeom]

• Added Image.page and related properties for virtual canvas handling. [#284 by Dan Harrison]

3.17. Wand Changelog 77

https://github.com/emcconville/wand/issues/132
https://github.com/emcconville/wand/issues/227
https://github.com/emcconville/wand/issues/153
https://github.com/emcconville/wand/issues/218
https://github.com/emcconville/wand/issues/309
https://github.com/emcconville/wand/issues/289
https://github.com/emcconville/wand/issues/367
https://github.com/emcconville/wand/issues/320
https://github.com/emcconville/wand/issues/346
https://github.com/emcconville/wand/issues/311
https://github.com/emcconville/wand/issues/233
https://github.com/emcconville/wand/issues/244
https://github.com/emcconville/wand/issues/292
https://docs.python.org/3/library/exceptions.html#TypeError
https://github.com/emcconville/wand/issues/310
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=841548
https://github.com/emcconville/wand/issues/237
https://docs.python.org/3/library/functions.html#repr
https://github.com/emcconville/wand/issues/265
https://github.com/emcconville/wand/issues/238
https://github.com/emcconville/wand/issues/268
https://github.com/emcconville/wand/issues/284

Wand Documentation, Release 0.5.4

• Added Image.merge_layers() method (MagickMergeImageLayers()). [#281 by Dan Harrison]

• Fixed OSError during import libc.dylib due to El Capitan’s SIP protection. [#275 by Ramesh Dharan]

Version 0.4.2

Released on November 30, 2015.

• Fixed ImportError on MSYS2. [#257 by Eon Jeong]

• Added Image.quantize() method (MagickQuantizeImage()). [#152 by Kang Hyojun, #262 by
Jeong YunWon]

• Added Image.transform_colorspace() quantize (MagickTransformImageColorspace()).
[#152 by Adrian Jung, #262 by Jeong YunWon]

• Now ImageMagick DLL can be loaded on Windows even if its location is stored in the resitry. [#261 by Roeland
Schoukens]

• Added depth parameter to Image constructor. The depth, width and height parameters can be used
with the filename, file and blob parameters to load raw pixel data. [#261 by Roeland Schoukens]

Version 0.4.1

Released on August 3, 2015.

• Added Image.auto_orient() that fixes orientation by checking EXIF tags.

• Added Image.transverse() method (MagickTransverseImage()).

• Added Image.transpose() method (MagickTransposeImage()).

• Added Image.evaluate() method.

• Added Image.frame() method.

• Added Image.function() method.

• Added Image.fx() expression method.

• Added gravity options in Image.crop() method. [#222 by Eric McConville]

• Added Image.matte_color property.

• Added Image.virtual_pixel property.

• Added Image.distort() method.

• Added Image.contrast_stretch() method.

• Added Image.gamma() method.

• Added Image.linear_stretch() method.

• Additional support for Image.alpha_channel.

• Additional query functions have been added to wand.version API. [#120]

– Added configure_options() function.

– Added fonts() function.

– Added formats() function.

• Additional IPython support. [#117]

78 Chapter 3. User’s guide

https://github.com/emcconville/wand/issues/281
https://docs.python.org/3/library/exceptions.html#OSError
https://github.com/emcconville/wand/issues/275
https://docs.python.org/3/library/exceptions.html#ImportError
https://github.com/emcconville/wand/issues/257
https://github.com/emcconville/wand/issues/152
https://github.com/emcconville/wand/issues/262
https://github.com/emcconville/wand/issues/152
https://github.com/emcconville/wand/issues/262
https://github.com/emcconville/wand/issues/261
https://github.com/emcconville/wand/issues/261
https://github.com/emcconville/wand/issues/222
https://github.com/emcconville/wand/issues/120
https://github.com/emcconville/wand/issues/117

Wand Documentation, Release 0.5.4

– Render RGB Color preview.

– Display each frame in image Sequence.

• Fixed memory-leak when accessing images constructed in Image.sequence[]. [#237 by Eric McConville]

• Fixed Windows memory-deallocate errors on wand.drawing API. [#226 by Eric McConville]

• Fixed ImportError on FreeBSD. [#252 by Pellaeon Lin]

Version 0.4.0

Released on February 20, 2015.

See also:

whatsnew/0.4 This guide introduces what’s new in Wand 0.4.

• Complete wand.drawing API. The whole work was done by Eric McConville. Huge thanks for his effort!
[#194 by Eric McConville]

– Added Drawing.arc() method (Arc).

– Added Drawing.bezier() method (Bezier).

– Added Drawing.circle() method (Circle).

– Color & Matte

* Added wand.drawing.PAINT_METHOD_TYPES constant.

* Added Drawing.color() method.

* Added Drawing matte() method.

– Added Drawing.composite() method (Composite).

– Added Drawing.ellipse() method (Ellipse).

– Paths

* Added path_start() method.

* Added path_finish() method.

* Added path_close() method.

* Added path_curve() method.

* Added path_curve_to_quadratic_bezier() method.

* Added path_elliptic_arc() method.

* Added path_horizontal_line() method.

* Added path_line() method.

* Added path_move() method.

* Added path_vertical_line() method.

– Added Drawing.point() method (Point).

– Added Drawing.polygon() method (Polygon).

– Added Drawing.polyline() method (Polyline).

– Push & Pop

3.17. Wand Changelog 79

https://github.com/emcconville/wand/issues/237
https://github.com/emcconville/wand/issues/226
https://docs.python.org/3/library/exceptions.html#ImportError
https://github.com/emcconville/wand/issues/252
https://github.com/emcconville/wand/issues/194

Wand Documentation, Release 0.5.4

* Added push() method.

* Added push_clip_path() method.

* Added push_defs() method.

* Added push_pattern() method.

* Added clip_path property.

* Added set_fill_pattern_url() method.

* Added set_stroke_pattern_url() method.

* Added pop() method.

– Added Drawing.rectangle() method (Rectangles).

– Added stroke_dash_array property.

– Added stroke_dash_offset property.

– Added stroke_line_cap property.

– Added stroke_line_join property.

– Added stroke_miter_limit property.

– Added stroke_opacity property.

– Added stroke_width property.

– Added fill_opacity property.

– Added fill_rule property.

• Error message of MissingDelegateError raised by Image.liquid_rescale() became nicer.

3.17.3 0.3 series

Version 0.3.9

Released on December 20, 2014.

• Added 'pdf:use-cropbox' option to Image.options dictionary (and OPTIONS constant). [#185 by
Christoph Neuroth]

• Fixed a bug that exception message was bytes instead of str on Python 3.

• The size parameter of Font class becomes optional. Its default value is 0, which means autosized. [#191 by
Cha, Hojeong]

• Fixed a bug that Image.read() had tried using MagickReadImageFile() even when the given file
object has no mode attribute. [#205 by Stephen J. Fuhry]

Version 0.3.8

Released on August 3, 2014.

• Fixed a bug that transparent background becomes filled with white when SVG is converted to other bitmap
image format like PNG. [#184]

• Added Image.negate() method. [#174 by Park Joon-Kyu]

• Fixed a segmentation fault on Image.modulate() method. [#173 by Ted Fung, #158]

80 Chapter 3. User’s guide

https://github.com/emcconville/wand/issues/185
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/emcconville/wand/issues/191
https://github.com/emcconville/wand/issues/205
https://github.com/emcconville/wand/issues/184
https://github.com/emcconville/wand/issues/174
https://github.com/emcconville/wand/issues/173
https://github.com/emcconville/wand/issues/158

Wand Documentation, Release 0.5.4

• Added suggestion to install freetype also if Homebrew is used. [#141]

• Now image/x-gif also is determined as animation. [#181 by Juan-Pablo Scaletti]

Version 0.3.7

Released on March 25, 2014.

• A hotfix of debug prints made at 0.3.6.

Version 0.3.6

Released on March 23, 2014.

• Added Drawing.rectangle() method. Now you can draw rectangles. [#159]

• Added Image.compression property. [#171]

• Added contextlib.nested() function to wand.compat module.

• Fixed UnicodeEncodeError when Drawing.text() method gives Unicode text argument in Python
2. [#163]

• Now it now allows to use Wand when Python is invoked with the -OO flag. [#169 by Samuel Maudo]

Version 0.3.5

Released on September 13, 2013.

• Fix segmentation fault on Image.save() method. [#150]

Version 0.3.4

Released on September 9, 2013.

• Added Image.modulate() method. [#134 by Dan P. Smith]

• Added Image.colorspace property. [#135 by Volodymyr Kuznetsov]

• Added Image.unsharp_mask() method. [#136 by Volodymyr Kuznetsov]

• Added 'jpeg:sampling-factor' option to Image.options dictionary (and OPTIONS constant).
[#137 by Volodymyr Kuznetsov]

• Fixed ImageMagick shared library resolution on Arch Linux. [#139, #140 by Sergey Tereschenko]

• Added Image.sample() method. [#142 by Michael Allen]

• Fixed a bug that Image.save() preserves only one frame of the given animation when file-like object is
passed. [#143, #145 by Michael Allen]

• Fixed searching of ImageMagick shared library with HDR support enabled. [#148, #149 by Lipin Dmitriy]

3.17. Wand Changelog 81

https://github.com/emcconville/wand/issues/141
https://github.com/emcconville/wand/issues/181
https://github.com/emcconville/wand/issues/159
https://github.com/emcconville/wand/issues/171
https://docs.python.org/3/library/exceptions.html#UnicodeEncodeError
https://github.com/emcconville/wand/issues/163
https://github.com/emcconville/wand/issues/169
https://github.com/emcconville/wand/issues/150
https://github.com/emcconville/wand/issues/134
https://github.com/emcconville/wand/issues/135
https://github.com/emcconville/wand/issues/136
https://github.com/emcconville/wand/issues/137
https://github.com/emcconville/wand/issues/139
https://github.com/emcconville/wand/issues/140
https://github.com/emcconville/wand/issues/142
https://github.com/emcconville/wand/issues/143
https://github.com/emcconville/wand/issues/145
https://github.com/emcconville/wand/issues/148
https://github.com/emcconville/wand/issues/149

Wand Documentation, Release 0.5.4

Version 0.3.3

Released on August 4, 2013. It’s author’s birthday.

• Added Image.gaussian_blur() method.

• Added Drawing.stroke_color property. [#129 by Zeray Rice]

• Added Drawing.stroke_width property. [#130 by Zeray Rice]

• Fixed a memory leak of Color class. [#127 by Wieland Morgenstern]

• Fixed a bug that Image.save() to stream truncates data. [#128 by Michael Allen]

• Fixed broken display() on Python 3. [#126]

Version 0.3.2

Released on July 11, 2013.

• Fixed incorrect encoding of filenames. [#122]

• Fixed key type of Image.metadata dictionary to str from bytes in Python 3.

• Fixed CentOS compatibility [#116, #124 by Pierre Vanliefland]

– Made DrawSetTextInterlineSpacing() and DrawGetTextInterlineSpacing() op-
tional.

– Added exception in drawing API when trying to use DrawSetTextInterlineSpacing() and
DrawGetTextInterlineSpacing() functions when they are not available.

– Added WandLibraryVersionError class for library versions issues.

Version 0.3.1

Released on June 23, 2013.

• Fixed ImportError on Windows.

Version 0.3.0

Released on June 17, 2013.

See also:

whatsnew/0.3 This guide introduces what’s new in Wand 0.3.

• Now also works on Python 2.6, 2.7, and 3.2 or higher.

• Added wand.drawing module. [#64 by Adrian Jung]

• Added Drawing.get_font_metrics() method. [#69, #71 by Cha, Hojeong]

• Added Image.caption() method. [#74 by Cha, Hojeong]

• Added optional color parameter to Image.trim() method.

• Added Image.border() method. [2496d37f75d75e9425f95dde07033217dc8afefc by Jae-Myoung Yu]

• Added resolution parameter to Image.read() method and the constructor of Image. [#75 by Andrey
Antukh]

82 Chapter 3. User’s guide

https://github.com/emcconville/wand/issues/129
https://github.com/emcconville/wand/issues/130
https://github.com/emcconville/wand/issues/127
https://github.com/emcconville/wand/issues/128
https://github.com/emcconville/wand/issues/126
https://github.com/emcconville/wand/issues/122
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://github.com/emcconville/wand/issues/116
https://github.com/emcconville/wand/issues/124
https://github.com/emcconville/wand/issues/64
https://github.com/emcconville/wand/issues/69
https://github.com/emcconville/wand/issues/71
https://github.com/emcconville/wand/issues/74
https://github.com/emcconville/wand/commit/2496d37f75d75e9425f95dde07033217dc8afefc
https://github.com/emcconville/wand/issues/75

Wand Documentation, Release 0.5.4

• Added Image.liquid_rescale() method which does seam carving. See also Seam carving (also known
as content-aware resizing).

• Added Image.metadata immutable mapping attribute and Metadatamapping type for it. [#56 by Michael
Elovskikh]

• Added Image.channel_images immutable mapping attribute and ChannelImageDict mapping for it.

• Added Image.channel_depths immutable mapping attribute and ChannelDepthDict mapping for it.

• Added Image.composite_channel() method.

• Added Image.read() method. [#58 by Piotr Florczyk]

• Added Image.resolution property. [#58 by Piotr Florczyk]

• Added Image.blank() method. [#60 by Piotr Florczyk]

• Fixed several memory leaks. [#62 by Mitch Lindgren]

• Added ImageProperty mixin class to maintain a weak reference to the parent image.

• Ranamed wand.image.COMPOSITE_OPS to COMPOSITE_OPERATORS.

• Now it shows helpful error message when ImageMagick library cannot be found.

• Added IPython-specialized formatter.

• Added QUANTUM_DEPTH constant.

• Added these properties to Color class:

– red_quantum

– green_quantum

– blue_quantum

– alpha_quantum

– red_int8

– green_int8

– blue_int8

– alpha_int8

• Added Image.normalize() method. [#95 by Michael Curry]

• Added Image.transparent_color() method. [#98 by Lionel Koenig]

• Started supporting resizing and cropping of GIF images. [#88 by Bear Dong, #112 by Taeho Kim]

• Added Image.flip() method.

• Added Image.flop() method.

• Added Image.orientation property. [88574468a38015669dae903185fb328abdd717c0 by Taeho Kim]

• wand.resource.DestroyedResourceError becomes a subtype of wand.exceptions.
WandException.

• Color is now hashable, so can be used as a key of dictionaries, or an element of sets. [#114 by klutzy]

• Color has normalized_string property.

• Image has histogram dictionary.

• Added optional fuzz parameter to Image.trim() method. [#113 by Evaldo Junior]

3.17. Wand Changelog 83

http://en.wikipedia.org/wiki/Seam_carving
https://github.com/emcconville/wand/issues/56
https://github.com/emcconville/wand/issues/58
https://github.com/emcconville/wand/issues/58
https://github.com/emcconville/wand/issues/60
https://github.com/emcconville/wand/issues/62
https://github.com/emcconville/wand/issues/95
https://github.com/emcconville/wand/issues/98
https://github.com/emcconville/wand/issues/88
https://github.com/emcconville/wand/issues/112
https://github.com/emcconville/wand/commit/88574468a38015669dae903185fb328abdd717c0
https://github.com/emcconville/wand/issues/114
https://github.com/emcconville/wand/issues/113

Wand Documentation, Release 0.5.4

3.17.4 0.2 series

Version 0.2.4

Released on May 28, 2013.

• Fix NameError in Resource.resource setter. [#89 forwareded from Debian bug report #699064 by
Jakub Wilk]

• Fix the problem of library loading for Mac with Homebrew and Arch Linux. [#102 by Roel Gerrits, #44]

Version 0.2.3

Released on January 25, 2013.

• Fixed a bug that Image.transparentize() method (and Image.watermark() method which inter-
nally uses it) didn’t work.

• Fixed segmentation fault occurred when Color.red, Color.green, or Color.blue is accessed.

• Added Color.alpha property.

• Fixed a bug that format converting using Image.format property or Image.convert() method doesn’t
correctly work to save blob.

Version 0.2.2

Released on September 24, 2012.

• A compatibility fix for FreeBSD. [Patch by Olivier Duchateau]

• Now Image can be instantiated without any opening. Instead, it can take width/height and background.
[#53 by Michael Elovskikh]

• Added Image.transform() method which is a convenience method accepting geometry strings to perform
cropping and resizing. [#50 by Mitch Lindgren]

• Added Image.units property. [#45 by Piotr Florczyk]

• Now Image.resize() method raises a proper error when it fails for any reason. [#41 by Piotr Florczyk]

• Added Image.type property. [#33 by Yauhen Yakimovich, #42 by Piotr Florczyk]

Version 0.2.1

Released on August 19, 2012. Beta version.

• Added Image.trim() method. [#26 by Jökull Sólberg Auðunsson]

• Added Image.depth property. [#31 by Piotr Florczyk]

• Now Image can take an optional format hint. [#32 by Michael Elovskikh]

• Added Image.alpha_channel property. [#35 by Piotr Florczyk]

• The default value of Image.resize()’s filter option has changed from 'triangle' to
'undefined'. [#37 by Piotr Florczyk]

• Added version data of the linked ImageMagick library into wand.version module:

– MAGICK_VERSION (GetMagickVersion())

84 Chapter 3. User’s guide

https://github.com/emcconville/wand/issues/89
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=699064
https://github.com/emcconville/wand/issues/102
https://github.com/emcconville/wand/issues/44
http://olivier-freebsd-ports.googlecode.com/hg-history/efb852a5572/graphics/py-wand/files/patch-wand_api.py
https://github.com/emcconville/wand/issues/53
https://github.com/emcconville/wand/issues/50
https://github.com/emcconville/wand/issues/45
https://github.com/emcconville/wand/issues/41
https://github.com/emcconville/wand/issues/33
https://github.com/emcconville/wand/issues/42
https://github.com/emcconville/wand/issues/26
https://github.com/emcconville/wand/issues/31
https://github.com/emcconville/wand/issues/32
https://github.com/emcconville/wand/issues/35
https://github.com/emcconville/wand/issues/37

Wand Documentation, Release 0.5.4

– MAGICK_VERSION_INFO (GetMagickVersion())

– MAGICK_VERSION_NUMBER (GetMagickVersion())

– MAGICK_RELEASE_DATE (GetMagickReleaseDate())

– MAGICK_RELEASE_DATE_STRING (GetMagickReleaseDate())

Version 0.2.0

Released on June 20, 2012. Alpha version.

• Added Image.transparentize() method. [#19 by Jeremy Axmacher]

• Added Image.composite() method. [#19 by Jeremy Axmacher]

• Added Image.watermark() method. [#19 by Jeremy Axmacher]

• Added Image.quantum_range property. [#19 by Jeremy Axmacher]

• Added Image.reset_coords() method and reset_coords option to Image.rotate() method.
[#20 by Juan Pablo Scaletti]

• Added Image.strip() method. [#23 by Dmitry Vukolov]

• Added Image.compression_quality property. [#23 by Dmitry Vukolov]

• Now the current version can be found from the command line interface: python -m wand.version.

3.17.5 0.1 series

Version 0.1.10

Released on May 8, 2012. Still alpha version.

• So many Windows compatibility issues are fixed. [#14 by John Simon]

• Added wand.api.libmagick.

• Fixed a bug that raises AttributeError when it’s trying to warn. [#16 by Tim Dettrick]

• Now it throws ImportError instead of AttributeError when the shared library fails to load. [#17 by
Kieran Spear]

• Fixed the example usage on index page of the documentation. [#18 by Jeremy Axmacher]

Version 0.1.9

Released on December 23, 2011. Still alpha version.

• Now wand.version.VERSION_INFO becomes tuple and wand.version.VERSION becomes a
string.

• Added Image.background_color property.

• Added == operator for Image type.

• Added hash() support of Image type.

• Added Image.signature property.

• Added wand.display module.

3.17. Wand Changelog 85

https://github.com/emcconville/wand/issues/19
https://github.com/emcconville/wand/issues/19
https://github.com/emcconville/wand/issues/19
https://github.com/emcconville/wand/issues/19
https://github.com/emcconville/wand/issues/20
https://github.com/emcconville/wand/issues/23
https://github.com/emcconville/wand/issues/23
https://github.com/emcconville/wand/issues/14
https://github.com/emcconville/wand/issues/16
https://github.com/emcconville/wand/issues/17
https://github.com/emcconville/wand/issues/18
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#hash

Wand Documentation, Release 0.5.4

• Changed the theme of Sphinx documentation.

• Changed the start example of the documentation.

Version 0.1.8

Released on December 2, 2011. Still alpha version.

• Wrote some guide documentations: Reading images, Writing images and Resizing and cropping.

• Added Image.rotate() method for in-place rotation.

• Made Image.crop() to raise proper ValueError instead of IndexError for invalid width/height argu-
ments.

• Changed the type of Image.resize() method’s blur parameter from numbers.Rational to
numbers.Real.

• Fixed a bug of raising ValueError when invalid filter has passed to Image.resize() method.

Version 0.1.7

Released on November 10, 2011. Still alpha version.

• Added Image.mimetype property.

• Added Image.crop() method for in-place crop.

Version 0.1.6

Released on October 31, 2011. Still alpha version.

• Removed a side effect of Image.make_blob() method that changes the image format silently.

• Added Image.format property.

• Added Image.convert() method.

• Fixed a bug about Python 2.6 compatibility.

• Use the internal representation of PixelWand instead of the string representaion for Color type.

Version 0.1.5

Released on October 28, 2011. Slightly mature alpha version.

• Now Image can read Python file objects by file keyword argument.

• Now Image.save() method can write into Python file objects by file keyword argument.

• Image.make_blob()’s format argument becomes omittable.

Version 0.1.4

Released on October 27, 2011. Hotfix of the malformed Python package.

86 Chapter 3. User’s guide

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/numbers.html#numbers.Rational
https://docs.python.org/3/library/numbers.html#numbers.Real

Wand Documentation, Release 0.5.4

Version 0.1.3

Released on October 27, 2011. Slightly mature alpha version.

• Pixel getter for Image.

• Row getter for Image.

• Mac compatibility.

• Windows compatibility.

• 64-bit processor compatibility.

Version 0.1.2

Released on October 16, 2011. Still alpha version.

• Image implements iterable interface.

• Added wand.color module.

• Added the abstract base class of all Wand resource objects: wand.resource.Resource.

• Image implements slicing.

• Cropping Image using its slicing operator.

Version 0.1.1

Released on October 4, 2011. Still alpha version.

• Now it handles errors and warnings properly and in natural way of Python.

• Added Image.make_blob() method.

• Added blob parameter into Image constructor.

• Added Image.resize() method.

• Added Image.save() method.

• Added Image.clone() method.

• Drawed the pretty logo picture (thanks to Hyojin Choi).

Version 0.1.0

Released on October 1, 2011. Very alpha version.

3.18 Talks and Presentations

3.18.1 Talks in 2012

• Lightning talk at Python Korea November 2012

3.18. Talks and Presentations 87

_static/wand.png
http://me2day.net/crocodile
http://j.mp/pykr2012-wand

Wand Documentation, Release 0.5.4

88 Chapter 3. User’s guide

CHAPTER 4

References

4.1 wand — Simple MagickWand API binding for Python

4.1.1 wand.exceptions — Errors and warnings

This module maps MagickWand API’s errors and warnings to Python’s native exceptions and warnings. You can catch
all MagickWand errors using Python’s natural way to catch errors.

See also:

ImageMagick Exceptions

New in version 0.1.1.

exception wand.exceptions.BaseError
Bases: wand.exceptions.WandException

Base class for Wand-related errors.

New in version 0.4.4.

exception wand.exceptions.BaseFatalError
Bases: wand.exceptions.WandException

Base class for Wand-related fatal errors.

New in version 0.4.4.

exception wand.exceptions.BaseWarning
Bases: wand.exceptions.WandException, Warning

Base class for Wand-related warnings.

New in version 0.4.4.

exception wand.exceptions.BlobError
Bases: wand.exceptions.BaseError, OSError

A binary large object could not be allocated, read, or written.

89

http://www.imagemagick.org/script/exception.php
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/exceptions.html#OSError

Wand Documentation, Release 0.5.4

exception wand.exceptions.BlobFatalError
Bases: wand.exceptions.BaseFatalError, OSError

A binary large object could not be allocated, read, or written.

exception wand.exceptions.BlobWarning
Bases: wand.exceptions.BaseWarning, OSError

A binary large object could not be allocated, read, or written.

wand.exceptions.CODE_MAP = [(<class 'wand.exceptions.BaseWarning'>, 'Warning'), (<class 'wand.exceptions.BaseError'>, 'Error'), (<class 'wand.exceptions.BaseFatalError'>, 'FatalError')]
(list) The list of (base_class, suffix) pairs (for each code). It would be zipped with DOMAIN_MAP pairs’ last
element.

exception wand.exceptions.CacheError
Bases: wand.exceptions.BaseError

Pixels could not be read or written to the pixel cache.

exception wand.exceptions.CacheFatalError
Bases: wand.exceptions.BaseFatalError

Pixels could not be read or written to the pixel cache.

exception wand.exceptions.CacheWarning
Bases: wand.exceptions.BaseWarning

Pixels could not be read or written to the pixel cache.

exception wand.exceptions.CoderError
Bases: wand.exceptions.BaseError

There was a problem with an image coder.

exception wand.exceptions.CoderFatalError
Bases: wand.exceptions.BaseFatalError

There was a problem with an image coder.

exception wand.exceptions.CoderWarning
Bases: wand.exceptions.BaseWarning

There was a problem with an image coder.

exception wand.exceptions.ConfigureError
Bases: wand.exceptions.BaseError

There was a problem getting a configuration file.

exception wand.exceptions.ConfigureFatalError
Bases: wand.exceptions.BaseFatalError

There was a problem getting a configuration file.

exception wand.exceptions.ConfigureWarning
Bases: wand.exceptions.BaseWarning

There was a problem getting a configuration file.

exception wand.exceptions.CorruptImageError
Bases: wand.exceptions.BaseError, ValueError

The image file may be corrupt.

90 Chapter 4. References

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError

Wand Documentation, Release 0.5.4

exception wand.exceptions.CorruptImageFatalError
Bases: wand.exceptions.BaseFatalError, ValueError

The image file may be corrupt.

exception wand.exceptions.CorruptImageWarning
Bases: wand.exceptions.BaseWarning, ValueError

The image file may be corrupt.

wand.exceptions.DOMAIN_MAP = [('ResourceLimit', 'A program resource is exhausted e.g. not enough memory.', (<class 'MemoryError'>,), [300, 400, 700]), ('Type', 'A font is unavailable; a substitution may have occurred.', (), [305, 405, 705]), ('Option', 'A command-line option was malformed.', (), [310, 410, 710]), ('Delegate', 'An ImageMagick delegate failed to complete.', (), [315, 415, 715]), ('MissingDelegate', 'The image type can not be read or written because the appropriate; delegate is missing.', (<class 'ImportError'>,), [320, 420, 720]), ('CorruptImage', 'The image file may be corrupt.', (<class 'ValueError'>,), [325, 425, 725]), ('FileOpen', 'The image file could not be opened for reading or writing.', (<class 'OSError'>,), [330, 430, 730]), ('Blob', 'A binary large object could not be allocated, read, or written.', (<class 'OSError'>,), [335, 435, 735]), ('Stream', 'There was a problem reading or writing from a stream.', (<class 'OSError'>,), [340, 440, 740]), ('Cache', 'Pixels could not be read or written to the pixel cache.', (), [345, 445, 745]), ('Coder', 'There was a problem with an image coder.', (), [350, 450, 750]), ('Module', 'There was a problem with an image module.', (), [355, 455, 755]), ('Draw', 'A drawing operation failed.', (), [360, 460, 760]), ('Image', 'The operation could not complete due to an incompatible image.', (), [365, 465, 765]), ('Wand', 'There was a problem specific to the MagickWand API.', (), [370, 470, 770]), ('Random', 'There is a problem generating a true or pseudo-random number.', (), [375, 475, 775]), ('XServer', 'An X resource is unavailable.', (), [380, 480, 780]), ('Monitor', 'There was a problem activating the progress monitor.', (), [385, 485, 785]), ('Registry', 'There was a problem getting or setting the registry.', (), [390, 490, 790]), ('Configure', 'There was a problem getting a configuration file.', (), [395, 495, 795]), ('Policy', 'A policy denies access to a delegate, coder, filter, path, or resource.', (), [399, 499, 799])]
(list) A list of error/warning domains, these descriptions and codes. The form of elements is like: (domain
name, description, codes).

exception wand.exceptions.DelegateError
Bases: wand.exceptions.BaseError

An ImageMagick delegate failed to complete.

exception wand.exceptions.DelegateFatalError
Bases: wand.exceptions.BaseFatalError

An ImageMagick delegate failed to complete.

exception wand.exceptions.DelegateWarning
Bases: wand.exceptions.BaseWarning

An ImageMagick delegate failed to complete.

exception wand.exceptions.DrawError
Bases: wand.exceptions.BaseError

A drawing operation failed.

exception wand.exceptions.DrawFatalError
Bases: wand.exceptions.BaseFatalError

A drawing operation failed.

exception wand.exceptions.DrawWarning
Bases: wand.exceptions.BaseWarning

A drawing operation failed.

exception wand.exceptions.FileOpenError
Bases: wand.exceptions.BaseError, OSError

The image file could not be opened for reading or writing.

exception wand.exceptions.FileOpenFatalError
Bases: wand.exceptions.BaseFatalError, OSError

The image file could not be opened for reading or writing.

exception wand.exceptions.FileOpenWarning
Bases: wand.exceptions.BaseWarning, OSError

The image file could not be opened for reading or writing.

exception wand.exceptions.ImageError
Bases: wand.exceptions.BaseError

The operation could not complete due to an incompatible image.

4.1. wand — Simple MagickWand API binding for Python 91

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError

Wand Documentation, Release 0.5.4

exception wand.exceptions.ImageFatalError
Bases: wand.exceptions.BaseFatalError

The operation could not complete due to an incompatible image.

exception wand.exceptions.ImageWarning
Bases: wand.exceptions.BaseWarning

The operation could not complete due to an incompatible image.

exception wand.exceptions.MissingDelegateError
Bases: wand.exceptions.BaseError, ImportError

The image type can not be read or written because the appropriate; delegate is missing.

exception wand.exceptions.MissingDelegateFatalError
Bases: wand.exceptions.BaseFatalError, ImportError

The image type can not be read or written because the appropriate; delegate is missing.

exception wand.exceptions.MissingDelegateWarning
Bases: wand.exceptions.BaseWarning, ImportError

The image type can not be read or written because the appropriate; delegate is missing.

exception wand.exceptions.ModuleError
Bases: wand.exceptions.BaseError

There was a problem with an image module.

exception wand.exceptions.ModuleFatalError
Bases: wand.exceptions.BaseFatalError

There was a problem with an image module.

exception wand.exceptions.ModuleWarning
Bases: wand.exceptions.BaseWarning

There was a problem with an image module.

exception wand.exceptions.MonitorError
Bases: wand.exceptions.BaseError

There was a problem activating the progress monitor.

exception wand.exceptions.MonitorFatalError
Bases: wand.exceptions.BaseFatalError

There was a problem activating the progress monitor.

exception wand.exceptions.MonitorWarning
Bases: wand.exceptions.BaseWarning

There was a problem activating the progress monitor.

exception wand.exceptions.OptionError
Bases: wand.exceptions.BaseError

A command-line option was malformed.

exception wand.exceptions.OptionFatalError
Bases: wand.exceptions.BaseFatalError

A command-line option was malformed.

92 Chapter 4. References

https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/exceptions.html#ImportError

Wand Documentation, Release 0.5.4

exception wand.exceptions.OptionWarning
Bases: wand.exceptions.BaseWarning

A command-line option was malformed.

exception wand.exceptions.PolicyError
Bases: wand.exceptions.BaseError

A policy denies access to a delegate, coder, filter, path, or resource.

exception wand.exceptions.PolicyFatalError
Bases: wand.exceptions.BaseFatalError

A policy denies access to a delegate, coder, filter, path, or resource.

exception wand.exceptions.PolicyWarning
Bases: wand.exceptions.BaseWarning

A policy denies access to a delegate, coder, filter, path, or resource.

exception wand.exceptions.RandomError
Bases: wand.exceptions.BaseError

There is a problem generating a true or pseudo-random number.

exception wand.exceptions.RandomFatalError
Bases: wand.exceptions.BaseFatalError

There is a problem generating a true or pseudo-random number.

exception wand.exceptions.RandomWarning
Bases: wand.exceptions.BaseWarning

There is a problem generating a true or pseudo-random number.

exception wand.exceptions.RegistryError
Bases: wand.exceptions.BaseError

There was a problem getting or setting the registry.

exception wand.exceptions.RegistryFatalError
Bases: wand.exceptions.BaseFatalError

There was a problem getting or setting the registry.

exception wand.exceptions.RegistryWarning
Bases: wand.exceptions.BaseWarning

There was a problem getting or setting the registry.

exception wand.exceptions.ResourceLimitError
Bases: wand.exceptions.BaseError, MemoryError

A program resource is exhausted e.g. not enough memory.

exception wand.exceptions.ResourceLimitFatalError
Bases: wand.exceptions.BaseFatalError, MemoryError

A program resource is exhausted e.g. not enough memory.

exception wand.exceptions.ResourceLimitWarning
Bases: wand.exceptions.BaseWarning, MemoryError

A program resource is exhausted e.g. not enough memory.

4.1. wand — Simple MagickWand API binding for Python 93

https://docs.python.org/3/library/exceptions.html#MemoryError
https://docs.python.org/3/library/exceptions.html#MemoryError
https://docs.python.org/3/library/exceptions.html#MemoryError

Wand Documentation, Release 0.5.4

exception wand.exceptions.StreamError
Bases: wand.exceptions.BaseError, OSError

There was a problem reading or writing from a stream.

exception wand.exceptions.StreamFatalError
Bases: wand.exceptions.BaseFatalError, OSError

There was a problem reading or writing from a stream.

exception wand.exceptions.StreamWarning
Bases: wand.exceptions.BaseWarning, OSError

There was a problem reading or writing from a stream.

wand.exceptions.TYPE_MAP = {300: <class 'wand.exceptions.ResourceLimitWarning'>, 305: <class 'wand.exceptions.TypeWarning'>, 310: <class 'wand.exceptions.OptionWarning'>, 315: <class 'wand.exceptions.DelegateWarning'>, 320: <class 'wand.exceptions.MissingDelegateWarning'>, 325: <class 'wand.exceptions.CorruptImageWarning'>, 330: <class 'wand.exceptions.FileOpenWarning'>, 335: <class 'wand.exceptions.BlobWarning'>, 340: <class 'wand.exceptions.StreamWarning'>, 345: <class 'wand.exceptions.CacheWarning'>, 350: <class 'wand.exceptions.CoderWarning'>, 355: <class 'wand.exceptions.ModuleWarning'>, 360: <class 'wand.exceptions.DrawWarning'>, 365: <class 'wand.exceptions.ImageWarning'>, 370: <class 'wand.exceptions.WandWarning'>, 375: <class 'wand.exceptions.RandomWarning'>, 380: <class 'wand.exceptions.XServerWarning'>, 385: <class 'wand.exceptions.MonitorWarning'>, 390: <class 'wand.exceptions.RegistryWarning'>, 395: <class 'wand.exceptions.ConfigureWarning'>, 399: <class 'wand.exceptions.PolicyWarning'>, 400: <class 'wand.exceptions.ResourceLimitError'>, 405: <class 'wand.exceptions.TypeError'>, 410: <class 'wand.exceptions.OptionError'>, 415: <class 'wand.exceptions.DelegateError'>, 420: <class 'wand.exceptions.MissingDelegateError'>, 425: <class 'wand.exceptions.CorruptImageError'>, 430: <class 'wand.exceptions.FileOpenError'>, 435: <class 'wand.exceptions.BlobError'>, 440: <class 'wand.exceptions.StreamError'>, 445: <class 'wand.exceptions.CacheError'>, 450: <class 'wand.exceptions.CoderError'>, 455: <class 'wand.exceptions.ModuleError'>, 460: <class 'wand.exceptions.DrawError'>, 465: <class 'wand.exceptions.ImageError'>, 470: <class 'wand.exceptions.WandError'>, 475: <class 'wand.exceptions.RandomError'>, 480: <class 'wand.exceptions.XServerError'>, 485: <class 'wand.exceptions.MonitorError'>, 490: <class 'wand.exceptions.RegistryError'>, 495: <class 'wand.exceptions.ConfigureError'>, 499: <class 'wand.exceptions.PolicyError'>, 700: <class 'wand.exceptions.ResourceLimitFatalError'>, 705: <class 'wand.exceptions.TypeFatalError'>, 710: <class 'wand.exceptions.OptionFatalError'>, 715: <class 'wand.exceptions.DelegateFatalError'>, 720: <class 'wand.exceptions.MissingDelegateFatalError'>, 725: <class 'wand.exceptions.CorruptImageFatalError'>, 730: <class 'wand.exceptions.FileOpenFatalError'>, 735: <class 'wand.exceptions.BlobFatalError'>, 740: <class 'wand.exceptions.StreamFatalError'>, 745: <class 'wand.exceptions.CacheFatalError'>, 750: <class 'wand.exceptions.CoderFatalError'>, 755: <class 'wand.exceptions.ModuleFatalError'>, 760: <class 'wand.exceptions.DrawFatalError'>, 765: <class 'wand.exceptions.ImageFatalError'>, 770: <class 'wand.exceptions.WandFatalError'>, 775: <class 'wand.exceptions.RandomFatalError'>, 780: <class 'wand.exceptions.XServerFatalError'>, 785: <class 'wand.exceptions.MonitorFatalError'>, 790: <class 'wand.exceptions.RegistryFatalError'>, 795: <class 'wand.exceptions.ConfigureFatalError'>, 799: <class 'wand.exceptions.PolicyFatalError'>}
(dict) The dictionary of (code, exc_type).

exception wand.exceptions.TypeError
Bases: wand.exceptions.BaseError

A font is unavailable; a substitution may have occurred.

exception wand.exceptions.TypeFatalError
Bases: wand.exceptions.BaseFatalError

A font is unavailable; a substitution may have occurred.

exception wand.exceptions.TypeWarning
Bases: wand.exceptions.BaseWarning

A font is unavailable; a substitution may have occurred.

exception wand.exceptions.WandError
Bases: wand.exceptions.BaseError

There was a problem specific to the MagickWand API.

exception wand.exceptions.WandException
Bases: Exception

All Wand-related exceptions are derived from this class.

exception wand.exceptions.WandFatalError
Bases: wand.exceptions.BaseFatalError

There was a problem specific to the MagickWand API.

exception wand.exceptions.WandLibraryVersionError
Bases: wand.exceptions.WandException

Base class for Wand-related ImageMagick version errors.

New in version 0.3.2.

exception wand.exceptions.WandRuntimeError
Bases: wand.exceptions.WandException, RuntimeError

Generic class for Wand-related runtime errors.

New in version 0.5.2.

exception wand.exceptions.WandWarning
Bases: wand.exceptions.BaseWarning

There was a problem specific to the MagickWand API.

94 Chapter 4. References

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#RuntimeError

Wand Documentation, Release 0.5.4

exception wand.exceptions.XServerError
Bases: wand.exceptions.BaseError

An X resource is unavailable.

exception wand.exceptions.XServerFatalError
Bases: wand.exceptions.BaseFatalError

An X resource is unavailable.

exception wand.exceptions.XServerWarning
Bases: wand.exceptions.BaseWarning

An X resource is unavailable.

4.1.2 wand.api — Low-level interfaces

Changed in version 0.1.10: Changed to throw ImportError instead of AttributeErrorwhen the shared library
fails to load.

class wand.api.AffineMatrix

class wand.api.MagickPixelPacket

wand.api.library
(ctypes.CDLL) The MagickWand library.

wand.api.libc
(ctypes.CDLL) The C standard library.

wand.api.libmagick
(ctypes.CDLL) The ImageMagick library. It is the same with library on platforms other than Windows.

New in version 0.1.10.

wand.api.load_library()
Loads the MagickWand library.

Returns the MagickWand library and the ImageMagick library

Return type ctypes.CDLL

class wand.api.PixelInfo

class wand.api.PointInfo

4.1.3 wand.compat — Compatibility layer

This module provides several subtle things to support multiple Python versions (2.6, 2.7, 3.3+) and VM implementa-
tions (CPython, PyPy).

wand.compat.PY3 = True
(bool) Whether it is Python 3.x or not.

wand.compat.abc = <module 'collections.abc' from '/home/docs/checkouts/readthedocs.org/user_builds/wand/envs/0.5.4/lib/python3.7/collections/abc.py'>
(module) Module containing abstract base classes. collections in Python 2 and collections.abc in
Python 3.

wand.compat.binary(string, var=None)
Makes string to str in Python 2. Makes string to bytes in Python 3.

Parameters

4.1. wand — Simple MagickWand API binding for Python 95

https://docs.python.org/3/library/ctypes.html#ctypes.CDLL
https://docs.python.org/3/library/ctypes.html#ctypes.CDLL
https://docs.python.org/3/library/ctypes.html#ctypes.CDLL
https://docs.python.org/3/library/ctypes.html#ctypes.CDLL
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.html#module-collections
https://docs.python.org/3/library/collections.abc.html#module-collections.abc
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

Wand Documentation, Release 0.5.4

• string (bytes, str, unicode) – a string to cast it to binary_type

• var (str) – an optional variable name to be used for error message

wand.compat.binary_type
alias of builtins.bytes

wand.compat.encode_filename(filename)
If filename is a text_type, encode it to binary_type according to filesystem’s default encoding.

Changed in version 0.5.3: Added support for PEP-519 https://github.com/emcconville/wand/pull/339

wand.compat.file_types
alias of io.RawIOBase

wand.compat.string_type
alias of builtins.str

wand.compat.text_type
alias of builtins.str

wand.compat.xrange
alias of builtins.range

4.1.4 wand.version — Version data

You can find the current version in the command line interface:

$ python -m wand.version
0.5.4
$ python -m wand.version --verbose
Wand 0.5.4
ImageMagick 6.7.7-6 2012-06-03 Q16 http://www.imagemagick.org
$ python -m wand.version --config | grep CC | cut -d : -f 2
gcc -std=gnu99 -std=gnu99
$ python -m wand.version --fonts | grep Helvetica
Helvetica
Helvetica-Bold
Helvetica-Light
Helvetica-Narrow
Helvetica-Oblique
$ python -m wand.version --formats | grep CMYK
CMYK
CMYKA

New in version 0.2.0: The command line interface.

New in version 0.2.2: The --verbose/-v option which also prints ImageMagick library version for CLI.

New in version 0.4.1: The --fonts, --formats, & --config option allows printing additional information
about ImageMagick library.

wand.version.VERSION = '0.5.4'
(basestring) The version string e.g. '0.1.2'.

Changed in version 0.1.9: Becomes string. (It was tuple before.)

wand.version.VERSION_INFO = (0, 5, 4)
(tuple) The version tuple e.g. (0, 1, 2).

Changed in version 0.1.9: Becomes tuple. (It was string before.)

96 Chapter 4. References

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/emcconville/wand/pull/339
https://docs.python.org/3/library/io.html#io.RawIOBase
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Wand Documentation, Release 0.5.4

wand.version.MAGICK_VERSION = None
(basestring) The version string of the linked ImageMagick library. The exactly same string to the result of
GetMagickVersion() function.

Example:

'ImageMagick 6.7.7-6 2012-06-03 Q16 http://www.imagemagick.org'

New in version 0.2.1.

wand.version.MAGICK_VERSION_FEATURES = 'Cipher DPC Modules OpenMP '
(basestring) A string of all features enabled. This value is identical to what is returned by
GetMagickFeatures()

New in version 0.5.0.

wand.version.MAGICK_VERSION_INFO = None
(tuple) The version tuple e.g. (6, 7, 7, 6) of MAGICK_VERSION .

New in version 0.2.1.

wand.version.MAGICK_VERSION_NUMBER = None
(numbers.Integral) The version number of the linked ImageMagick library.

New in version 0.2.1.

wand.version.MAGICK_RELEASE_DATE = None
(datetime.date) The release date of the linked ImageMagick library. Equivalent to the result of
GetMagickReleaseDate() function.

New in version 0.2.1.

wand.version.MAGICK_RELEASE_DATE_STRING = None
(basestring) The date string e.g. '2012-06-03' of MAGICK_RELEASE_DATE_STRING. This value is
the exactly same string to the result of GetMagickReleaseDate() function.

New in version 0.2.1.

wand.version.MAGICK_HDRI = None
(bool) True if ImageMagick is compiled for High Dynamic Range Image.

wand.version.QUANTUM_DEPTH = None
(numbers.Integral) The quantum depth configuration of the linked ImageMagick library. One of 8, 16,
32, or 64.

New in version 0.3.0.

wand.version.QUANTUM_RANGE = None
(numbers.Integral) The quantum range configuration of the linked ImageMagick library.

New in version 0.5.0.

wand.version.configure_options(pattern=’*’)
Queries ImageMagick library for configurations options given at compile-time.

Example: Find where the ImageMagick documents are installed:

>>> from wand.version import configure_options
>>> configure_options('DOC*')
{'DOCUMENTATION_PATH': '/usr/local/share/doc/ImageMagick-6'}

Parameters pattern (basestring) – A term to filter queries against. Supports wildcard ‘*’
characters. Default patterns ‘*’ for all options.

4.1. wand — Simple MagickWand API binding for Python 97

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/numbers.html#numbers.Integral
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/numbers.html#numbers.Integral
https://docs.python.org/3/library/numbers.html#numbers.Integral

Wand Documentation, Release 0.5.4

Returns Directory of configuration options matching given pattern

Return type collections.defaultdict

wand.version.fonts(pattern=’*’)
Queries ImageMagick library for available fonts.

Available fonts can be configured by defining types.xml, type-ghostscript.xml, or type-windows.xml. Use wand.
version.configure_options() to locate system search path, and resources article for defining xml file.

Example: List all bold Helvetica fonts:

>>> from wand.version import fonts
>>> fonts('*Helvetica*Bold*')
['Helvetica-Bold', 'Helvetica-Bold-Oblique', 'Helvetica-BoldOblique',
'Helvetica-Narrow-Bold', 'Helvetica-Narrow-BoldOblique']

Parameters pattern (basestring) – A term to filter queries against. Supports wildcard ‘*’
characters. Default patterns ‘*’ for all options.

Returns Sequence of matching fonts

Return type collections.Sequence

wand.version.formats(pattern=’*’)
Queries ImageMagick library for supported formats.

Example: List supported PNG formats:

>>> from wand.version import formats
>>> formats('PNG*')
['PNG', 'PNG00', 'PNG8', 'PNG24', 'PNG32', 'PNG48', 'PNG64']

Parameters pattern (basestring) – A term to filter formats against. Supports wildcards ‘*’
characters. Default pattern ‘*’ for all formats.

Returns Sequence of matching formats

Return type collections.Sequence

98 Chapter 4. References

https://docs.python.org/3/library/collections.html#collections.defaultdict
http://www.imagemagick.org/script/resources.php

CHAPTER 5

Troubleshooting

5.1 Mailing list

Wand has the list for users. If you want to subscribe the list, just send a mail to:

wand@librelist.com

The list archive provided by Librelist is synchronized every hour.

5.2 Stack Overflow

There’s a Stack Overflow tag for Wand:

http://stackoverflow.com/questions/tagged/wand

Freely ask questions about Wand including troubleshooting. Thanks for sindikat’s contribution.

5.3 Documentation

The documentation for Wand is hosted by ReadTheDocs.org. The nightly development docs can be found under the
latest version, and the most recent release under stable. Previous & maintenance releases are also available.

99

mailto:wand@librelist.com
http://librelist.com/browser/wand/
http://librelist.com/
http://stackoverflow.com/questions/tagged/wand
http://stackoverflow.com/users/596361/sindikat
http://docs.wand-py.org
https://readthedocs.org
http://docs.wand-py.org/en/latest/
http://docs.wand-py.org/en/stable/

Wand Documentation, Release 0.5.4

100 Chapter 5. Troubleshooting

CHAPTER 6

Open source

Wand is an open source software initially written by Hong Minhee (for StyleShare), and is currently maintained by E.
McConville. See also the complete list of contributors as well. The source code is distributed under MIT license and
you can find it at GitHub repository. Check out now:

$ git clone git://github.com/emcconville/wand.git

If you find a bug, please notify to our issue tracker. Pull requests are always welcome!

We discuss about Wand’s development on IRC. Come #wand channel on freenode network.

Check out Wand Changelog also.

101

http://hongminhee.org/
https://stylesha.re/
https://github.com/emcconville/wand/graphs/contributors
http://minhee.mit-license.org/
https://github.com/emcconville/wand
https://github.com/emcconville/wand/issues

Wand Documentation, Release 0.5.4

102 Chapter 6. Open source

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

103

Wand Documentation, Release 0.5.4

104 Chapter 7. Indices and tables

Python Module Index

w
wand, 89
wand.api, 95
wand.compat, 95
wand.exceptions, 89
wand.version, 96

105

Wand Documentation, Release 0.5.4

106 Python Module Index

Index

A
abc (in module wand.compat), 95
AffineMatrix (class in wand.api), 95

B
BaseError, 89
BaseFatalError, 89
BaseWarning, 89
binary() (in module wand.compat), 95
binary_type (in module wand.compat), 96
BlobError, 89
BlobFatalError, 89
BlobWarning, 90

C
CacheError, 90
CacheFatalError, 90
CacheWarning, 90
CODE_MAP (in module wand.exceptions), 90
CoderError, 90
CoderFatalError, 90
CoderWarning, 90
configure_options() (in module wand.version),

97
ConfigureError, 90
ConfigureFatalError, 90
ConfigureWarning, 90
CorruptImageError, 90
CorruptImageFatalError, 90
CorruptImageWarning, 91

D
DelegateError, 91
DelegateFatalError, 91
DelegateWarning, 91
DOMAIN_MAP (in module wand.exceptions), 91
DrawError, 91
DrawFatalError, 91
DrawWarning, 91

E
encode_filename() (in module wand.compat), 96
environment variable

MAGICK_HOME, 11–13

F
file_types (in module wand.compat), 96
FileOpenError, 91
FileOpenFatalError, 91
FileOpenWarning, 91
fonts() (in module wand.version), 98
formats() (in module wand.version), 98

I
ImageError, 91
ImageFatalError, 91
ImageWarning, 92

L
libc (in module wand.api), 95
libmagick (in module wand.api), 95
library (in module wand.api), 95
load_library() (in module wand.api), 95

M
MAGICK_HDRI (in module wand.version), 97
MAGICK_HOME, 11–13
MAGICK_RELEASE_DATE (in module wand.version),

97
MAGICK_RELEASE_DATE_STRING (in module

wand.version), 97
MAGICK_VERSION (in module wand.version), 96
MAGICK_VERSION_FEATURES (in module

wand.version), 97
MAGICK_VERSION_INFO (in module wand.version),

97
MAGICK_VERSION_NUMBER (in module

wand.version), 97
MagickPixelPacket (class in wand.api), 95

107

Wand Documentation, Release 0.5.4

MissingDelegateError, 92
MissingDelegateFatalError, 92
MissingDelegateWarning, 92
ModuleError, 92
ModuleFatalError, 92
ModuleWarning, 92
MonitorError, 92
MonitorFatalError, 92
MonitorWarning, 92

O
OptionError, 92
OptionFatalError, 92
OptionWarning, 92

P
PixelInfo (class in wand.api), 95
PointInfo (class in wand.api), 95
PolicyError, 93
PolicyFatalError, 93
PolicyWarning, 93
PY3 (in module wand.compat), 95

Q
QUANTUM_DEPTH (in module wand.version), 97
QUANTUM_RANGE (in module wand.version), 97

R
RandomError, 93
RandomFatalError, 93
RandomWarning, 93
RegistryError, 93
RegistryFatalError, 93
RegistryWarning, 93
ResourceLimitError, 93
ResourceLimitFatalError, 93
ResourceLimitWarning, 93

S
StreamError, 93
StreamFatalError, 94
StreamWarning, 94
string_type (in module wand.compat), 96

T
text_type (in module wand.compat), 96
TYPE_MAP (in module wand.exceptions), 94
TypeError, 94
TypeFatalError, 94
TypeWarning, 94

V
VERSION (in module wand.version), 96

VERSION_INFO (in module wand.version), 96

W
wand (module), 89
wand.api (module), 95
wand.compat (module), 95
wand.exceptions (module), 89
wand.version (module), 96
WandError, 94
WandException, 94
WandFatalError, 94
WandLibraryVersionError, 94
WandRuntimeError, 94
WandWarning, 94

X
xrange (in module wand.compat), 96
XServerError, 94
XServerFatalError, 95
XServerWarning, 95

108 Index

	Why just another binding?
	Requirements
	User’s guide
	What’s new in Wand 0.5?
	Installation
	Reading images
	Writing images
	Resizing and cropping
	Transformation
	Colorspace
	Color Enhancement
	Distortion
	Drawing
	Reading EXIF
	Layers
	Sequence
	Resource management
	Running tests
	Roadmap
	Wand Changelog
	Talks and Presentations

	References
	wand — Simple MagickWand API binding for Python

	Troubleshooting
	Mailing list
	Stack Overflow
	Documentation

	Open source
	Indices and tables
	Python Module Index
	Index

